Quadratic Lie conformal superalgebras related to Novikov superalgebras

IF 0.7 2区 数学 Q2 MATHEMATICS
P. Kolesnikov, R. Kozlov, A. Panasenko
{"title":"Quadratic Lie conformal superalgebras related to Novikov superalgebras","authors":"P. Kolesnikov, R. Kozlov, A. Panasenko","doi":"10.4171/JNCG/445","DOIUrl":null,"url":null,"abstract":"We study quadratic Lie conformal superalgebras associated with No\\-vikov superalgebras. For every Novikov superalgebra $(V,\\circ)$, we construct an enveloping differential Poisson superalgebra $U(V)$ with a derivation $d$ such that $u\\circ v = ud(v)$ and $\\{u,v\\} = u\\circ v - (-1)^{|u||v|} v\\circ u$ for $u,v\\in V$. The latter means that the commutator Gelfand--Dorfman superalgebra of $V$ is special. Next, we prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special Gel'fand--Dorfman superalgebra has a finite faithful conformal representation. This statement is a step toward a solution of the following open problem: whether a finite Lie conformal (super)algebra has a finite faithful conformal representation.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JNCG/445","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study quadratic Lie conformal superalgebras associated with No\-vikov superalgebras. For every Novikov superalgebra $(V,\circ)$, we construct an enveloping differential Poisson superalgebra $U(V)$ with a derivation $d$ such that $u\circ v = ud(v)$ and $\{u,v\} = u\circ v - (-1)^{|u||v|} v\circ u$ for $u,v\in V$. The latter means that the commutator Gelfand--Dorfman superalgebra of $V$ is special. Next, we prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special Gel'fand--Dorfman superalgebra has a finite faithful conformal representation. This statement is a step toward a solution of the following open problem: whether a finite Lie conformal (super)algebra has a finite faithful conformal representation.
与Novikov超代数相关的二次Lie共形超代数
研究了与No\-vikov超代数相关的二次李共形超代数。对于每一个Novikov超代数$(V,\circ)$,我们构造了一个包络微分泊松超代数$U(V)$,其导数$d$使得$U \circ V = ud(V)$和$\{U, V \} = U \circ V - (-1)^{| U || V |} V \circ U $对于$U, V \in V$。后者意味着V$的对易子Gelfand—Dorfman超代数是特殊的。其次,我们证明了在有限维特殊Gel’fand—Dorfman超代数上构造的每一个二次Lie共形超代数都有一个有限忠实的共形表示。这个命题是解决以下开放问题的一个步骤:有限李共形(超)代数是否有有限忠实的共形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信