IMPROVING APPROXIMATION RATIOS FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

Q4 Decision Sciences
Masamune Kawasaki, Kenjiro Takazawa
{"title":"IMPROVING APPROXIMATION RATIOS FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM","authors":"Masamune Kawasaki, Kenjiro Takazawa","doi":"10.15807/jorsj.63.60","DOIUrl":null,"url":null,"abstract":"The clustered traveling salesman problem (CTSP) is a generalization of the traveling salesman problem (TSP) in which the set of cities is divided into clusters and the salesman must consecutively visit the cities of each cluster. It is well known that TSP is NP-hard, and hence CTSP is NP-hard as well. Guttmann-Beck et al. (2000) designed approximation algorithms for several variants of CTSP by decomposing it into subproblems including the traveling salesman path problem (TSPP). In this paper, we improve approximation ratios by applying a recent improved approximation algorithm for TSPP by Zenklusen (2019).","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"63 1","pages":"60-70"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.63.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

The clustered traveling salesman problem (CTSP) is a generalization of the traveling salesman problem (TSP) in which the set of cities is divided into clusters and the salesman must consecutively visit the cities of each cluster. It is well known that TSP is NP-hard, and hence CTSP is NP-hard as well. Guttmann-Beck et al. (2000) designed approximation algorithms for several variants of CTSP by decomposing it into subproblems including the traveling salesman path problem (TSPP). In this paper, we improve approximation ratios by applying a recent improved approximation algorithm for TSPP by Zenklusen (2019).
改进了聚类旅行推销员问题的近似比
集群旅行推销员问题(CTSP)是旅行推销员问题的推广,其中城市集被划分为集群,推销员必须连续访问每个集群的城市。众所周知,TSP是NP难的,因此CTSP也是NP难的。Guttmann-Beck等人(2000)通过将CTSP分解为包括旅行商路径问题(TSPP)在内的子问题,为CTSP的几种变体设计了近似算法。在本文中,我们通过应用Zenklusen(2019)最近改进的TSPP近似算法来提高近似率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信