$\alpha$-$(h,e)$-convex operators and applications for Riemann-Liouville fractional differential equations

IF 0.7 4区 数学 Q2 MATHEMATICS
Bibo Zhou, Lingling Zhang
{"title":"$\\alpha$-$(h,e)$-convex operators and applications for Riemann-Liouville fractional differential equations","authors":"Bibo Zhou, Lingling Zhang","doi":"10.12775/tmna.2022.014","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of $\\alpha$-$(h,e)$-convex operators defined\n in set $P_{h,e}$ and applications with $\\alpha> 1$. Without assuming the operator\nto be completely continuous or compact, by employing cone theory and monotone\n iterative technique, we not only obtain the existence and uniqueness of fixed point\nof $\\alpha$-$(h,e)$-convex operators, but also construct two monotone iterative\n sequences to approximate the unique fixed point. At last, we investigate the\n existence-uniqueness of a nontrivial solution for Riemann-Liouville fractional differential equations integral boundary value problems by employing\n$\\alpha$-$(h,e)$-convex operators fixed point theorem.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a class of $\alpha$-$(h,e)$-convex operators defined in set $P_{h,e}$ and applications with $\alpha> 1$. Without assuming the operator to be completely continuous or compact, by employing cone theory and monotone iterative technique, we not only obtain the existence and uniqueness of fixed point of $\alpha$-$(h,e)$-convex operators, but also construct two monotone iterative sequences to approximate the unique fixed point. At last, we investigate the existence-uniqueness of a nontrivial solution for Riemann-Liouville fractional differential equations integral boundary value problems by employing $\alpha$-$(h,e)$-convex operators fixed point theorem.
$\alpha$-$(h,e)$-凸算子及其在Riemann-Liouville分数阶微分方程中的应用
本文考虑了一类$\alpha$-$(h,e)$-凸算子,定义在集合$P_{h,e}$中,以及$\alpha> 1$的应用。在不假设算子是完全连续或紧的情况下,利用锥理论和单调迭代技术,得到了$\ α $-$(h,e)$-凸算子不动点的存在唯一性,构造了两个单调迭代序列来逼近不动点的唯一性。最后,利用$\ α $-$(h,e)$-凸算子不动点定理,研究了一类Riemann-Liouville分数阶微分方程积分边值问题非平凡解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信