"THERMOELASTIC DISPLACEMENT AND TEMPERATURE RISE IN A HALF-SPACE DUE TO A STEADY-STATE HEAT FLUX "

Q4 Engineering
S. Spinu
{"title":"\"THERMOELASTIC DISPLACEMENT AND TEMPERATURE RISE IN A HALF-SPACE DUE TO A STEADY-STATE HEAT FLUX \"","authors":"S. Spinu","doi":"10.54684/ijmmt.2022.14.3.326","DOIUrl":null,"url":null,"abstract":"Due to model complexity, classical contact mechanics theory assumes isothermal contact processes, involving bodies with uniform temperatures and no heat transmitted or generated through or near the contact interface. This paper addresses the problem of frictional heating in non-conforming or rough contacts by investigating the thermoelastic behaviour of asperities. The heat generated in a sliding contact by interfacial friction leads to thermoelastic distortion of the contact surface, further modifying contact parameters such as pressure, gap or temperature. The thermal expansion of the contacting bodies must therefore be accounted for when solving the contact problem. The thermoelastic displacement is computed with the aid of the half-space theory and of fundamental solutions for point sources of heat located at the free surface, derived in the literature of heat conduction in solids. The linearity of conduction equations encourages the use of superposition principle in the same way as for the elastic displacement. As the thermoelastic displacement is expressed mathematically as a convolution product, methods derived in contact mechanics for elastic displacement calculation are adapted to the heat conduction equations. The influence coefficients needed to efficiently compute the convolution products are derived, and the Discrete Convolution Fast Fourier Transform technique is applied to improve the algorithm computational efficiency. A similar method is then advanced for the temperature rise on the contact interface due to arbitrary heat input. The predictions of the newly advanced computer programs are tested against existing closed-form solutions for uniform circular or ring heat sources, and a good agreement is found.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2022.14.3.326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Due to model complexity, classical contact mechanics theory assumes isothermal contact processes, involving bodies with uniform temperatures and no heat transmitted or generated through or near the contact interface. This paper addresses the problem of frictional heating in non-conforming or rough contacts by investigating the thermoelastic behaviour of asperities. The heat generated in a sliding contact by interfacial friction leads to thermoelastic distortion of the contact surface, further modifying contact parameters such as pressure, gap or temperature. The thermal expansion of the contacting bodies must therefore be accounted for when solving the contact problem. The thermoelastic displacement is computed with the aid of the half-space theory and of fundamental solutions for point sources of heat located at the free surface, derived in the literature of heat conduction in solids. The linearity of conduction equations encourages the use of superposition principle in the same way as for the elastic displacement. As the thermoelastic displacement is expressed mathematically as a convolution product, methods derived in contact mechanics for elastic displacement calculation are adapted to the heat conduction equations. The influence coefficients needed to efficiently compute the convolution products are derived, and the Discrete Convolution Fast Fourier Transform technique is applied to improve the algorithm computational efficiency. A similar method is then advanced for the temperature rise on the contact interface due to arbitrary heat input. The predictions of the newly advanced computer programs are tested against existing closed-form solutions for uniform circular or ring heat sources, and a good agreement is found.
由稳态热流引起的半空间热弹性位移和温升
由于模型的复杂性,经典接触力学理论假设等温接触过程,涉及温度均匀的物体,没有热量通过或靠近接触界面传递或产生。本文通过研究非均匀或粗糙接触的热弹性行为来解决摩擦加热问题。界面摩擦在滑动接触中产生的热量导致接触面的热弹性变形,从而进一步改变接触参数,如压力、间隙或温度。因此,在解决接触问题时必须考虑接触体的热膨胀。热弹性位移是借助于半空间理论和固体热传导文献中导出的自由表面点源的基本解来计算的。传导方程的线性性鼓励采用与弹性位移相同的叠加原理。由于热弹性位移在数学上表示为卷积积,因此接触力学中导出的弹性位移计算方法适用于热传导方程。推导了有效计算卷积积所需的影响系数,并采用离散卷积快速傅立叶变换技术提高了算法的计算效率。然后提出了一种类似的方法,用于处理由于任意热输入而导致的接触界面上的温升。最新的先进计算机程序的预测与现有的均匀圆形或环状热源的封闭形式解进行了测试,发现了很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Manufacturing Technologies
International Journal of Modern Manufacturing Technologies Engineering-Industrial and Manufacturing Engineering
CiteScore
0.70
自引率
0.00%
发文量
15
期刊介绍: The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信