{"title":"Exponential control of the trajectories of iterated function systems with application to semi-strong GARCH models","authors":"Baye Matar Kandji","doi":"10.1017/jpr.2023.13","DOIUrl":null,"url":null,"abstract":"\n We establish new results on the strictly stationary solution to an iterated function system. When the driving sequence is stationary and ergodic, though not independent, the strictly stationary solution may admit no moment but we show an exponential control of the trajectories. We exploit these results to prove, under mild conditions, the consistency of the quasi-maximum likelihood estimator of GARCH(p,q) models with non-independent innovations.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish new results on the strictly stationary solution to an iterated function system. When the driving sequence is stationary and ergodic, though not independent, the strictly stationary solution may admit no moment but we show an exponential control of the trajectories. We exploit these results to prove, under mild conditions, the consistency of the quasi-maximum likelihood estimator of GARCH(p,q) models with non-independent innovations.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.