Power Comparison of Autocorrelation Tests in Dynamic Models

T. Islam, Erum Toor
{"title":"Power Comparison of Autocorrelation Tests in Dynamic Models","authors":"T. Islam, Erum Toor","doi":"10.33818/ier.447133","DOIUrl":null,"url":null,"abstract":"The four most readily available tests of autocorrelation in dynamic models namely Durbin’s M test, Durbin’s H test, Breusch Godfrey test ( BGF ) and Ljung & Box ( Q ) test are compared in terms of their power for varying sample sizes, levels of autocorrelation and significance using Monte Carlo simulations in STATA. Power comparison reveals that the Durbin M test is the best option for testing the hypothesis of no autocorrelation in dynamic models for all sample sizes. Breusch Godfrey’s test has comparable and at times minutely better performance than Durbin’s M test however in small sample sizes, Durbin’s M test outperforms the Breusch Godfrey test in terms of power. The Durbin H and the Ljung & Box Q tests consistently occupy the second last and last positions respectively in terms of power performance with maximum power gap of 63 & 60% respectively from the best test ( M test).","PeriodicalId":32692,"journal":{"name":"International Econometric Review","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Econometric Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33818/ier.447133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The four most readily available tests of autocorrelation in dynamic models namely Durbin’s M test, Durbin’s H test, Breusch Godfrey test ( BGF ) and Ljung & Box ( Q ) test are compared in terms of their power for varying sample sizes, levels of autocorrelation and significance using Monte Carlo simulations in STATA. Power comparison reveals that the Durbin M test is the best option for testing the hypothesis of no autocorrelation in dynamic models for all sample sizes. Breusch Godfrey’s test has comparable and at times minutely better performance than Durbin’s M test however in small sample sizes, Durbin’s M test outperforms the Breusch Godfrey test in terms of power. The Durbin H and the Ljung & Box Q tests consistently occupy the second last and last positions respectively in terms of power performance with maximum power gap of 63 & 60% respectively from the best test ( M test).
动态模型中自相关检验的功率比较
使用STATA中的蒙特卡罗模拟,比较了动态模型中四种最容易获得的自相关检验,即Durbin的M检验、Durbin的H检验、Breusch-Gorfrey检验(BGF)和Ljung&Box(Q)检验,以了解它们在不同样本量、自相关水平和显著性下的功效。功率比较表明,对于所有样本量的动态模型,Durbin M检验是检验无自相关假设的最佳选择。Breusch Godfrey测试的性能与Durbin的M测试相当,有时甚至要好得多。然而,在小样本量下,Durbin的M测试在功率方面优于Breusch Godfrey测试。Durbin H和Ljung&Box Q测试在功率性能方面始终分别占据倒数第二和倒数第二的位置,与最佳测试(M测试)相比,最大功率差距分别为63%和60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信