Growth alternative for Hecke-Kiselman monoids

Pub Date : 2019-01-01 DOI:10.5565/PUBLMAT6311907
Arkadiusz Mȩcel, J. Okniński
{"title":"Growth alternative for Hecke-Kiselman monoids","authors":"Arkadiusz Mȩcel, J. Okniński","doi":"10.5565/PUBLMAT6311907","DOIUrl":null,"url":null,"abstract":"The Gelfand–Kirillov dimension of Hecke–Kiselman algebras defined by oriented graphs is studied. It is shown that the dimension is infinite if and only if the underlying graph contains two cycles connected by an (oriented) path. Moreover, in this case, the Hecke–Kiselman monoid contains a free noncommutative submonoid. The dimension is finite if and only if the monoid algebra satisfies a polynomial identity. 2010 Mathematics Subject Classification: 16P90, 16S15, 16S36, 16S99, 20M05.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6311907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Gelfand–Kirillov dimension of Hecke–Kiselman algebras defined by oriented graphs is studied. It is shown that the dimension is infinite if and only if the underlying graph contains two cycles connected by an (oriented) path. Moreover, in this case, the Hecke–Kiselman monoid contains a free noncommutative submonoid. The dimension is finite if and only if the monoid algebra satisfies a polynomial identity. 2010 Mathematics Subject Classification: 16P90, 16S15, 16S36, 16S99, 20M05.
分享
查看原文
Hecke-Kiselman monoid的生长替代方案
研究了有向图定义的Hecke-Kiselman代数的Gelfand-Kirillov维数。证明了当且仅当底层图包含由一条(有向)路径连接的两个环时,维数是无限的。而且,在这种情况下,Hecke-Kiselman单群包含一个自由非交换子单群。当且仅当一元代数满足多项式恒等式时,维数是有限的。2010数学学科分类:16P90、16S15、16S36、16S99、20M05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信