Mean Value Inequalities for the Digamma Function

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Alzer, M. K. Kwong
{"title":"Mean Value Inequalities for the Digamma Function","authors":"H. Alzer,&nbsp;M. K. Kwong","doi":"10.1007/s10476-023-0206-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$\\left( * \\right)\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,{\\kern 1pt} \\left( {b - a} \\right)\\psi \\left( {\\sqrt {ab} } \\right) &lt; \\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{\\psi ^\\prime }\\left( x \\right) + 3x{\\psi ^{\\prime \\prime }}\\left( x \\right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> &gt; <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> &gt; 0, </p><div><div><span>$$\\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right) &lt; \\left( {b - a} \\right)\\psi \\left( {{{a + b} \\over 2}} \\right).$$</span></div></div></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 1","pages":"1 - 17"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0206-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ψ be the digamma function and let L(a,b) = (ba)/log(b/a) be the logarithmic mean of a and b. We prove that the inequality

$$\left( * \right)\,\,\,\,\,\,\,\,\,\,\,\,{\kern 1pt} \left( {b - a} \right)\psi \left( {\sqrt {ab} } \right) < \left( {L\left( {a,b} \right) - a} \right)\psi \left( a \right) + \left( {b - L\left( {a,b} \right)} \right)\psi \left( b \right)$$

holds for all real numbers a and b with b > aα0. Here, α0 ≈ 0.56155 is the only positive solution of

$$5{\psi ^\prime }\left( x \right) + 3x{\psi ^{\prime \prime }}\left( x \right) = 0.$$

The constant lower bound α0 is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for b > a ≥ 2. Moreover, we prove that the following companion to (*) holds for all a and b with b > a > 0,

$$\left( {L\left( {a,b} \right) - a} \right)\psi \left( a \right) + \left( {b - L\left( {a,b} \right)} \right)\psi \left( b \right) < \left( {b - a} \right)\psi \left( {{{a + b} \over 2}} \right).$$
二函数的均值不等式
设ψ为digamma函数,设L(a,b)=(b−a)/log(b/a)为a和b的对数平均值;\left({L\left({a,b}\right)-a}\right\psi\left;a≥α0。这里,α0≈0.56155是$$5{\psi^\prime}\left(x\right)+3x{\pisi^{\prime)}\lift(x\ right)=0的唯一正解。$$常数下界α0是最可能的。这改进了Chu、Zhang和Tang的结果,他们证明(*)对于b>;a≥2。此外,我们证明了(*)的以下伴随对所有a和b都成立,其中b>;a>;0,$$\left({L\left({a,b}\right)-a}\right\psi\left(a\right)+\left;\left({b-a}\right)\psi\left({{a+b}\over 2}}\right.)$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信