M. Bochkova, V. Timganova, P. Khramtsov, S. Uzhviyuk, K. Shardina, A. Nechaev, M. Raev, S. Zamorina
{"title":"Study of the graphene oxide nanoparticles effect on luminol-dependent chemiluminescence of human leukocytes","authors":"M. Bochkova, V. Timganova, P. Khramtsov, S. Uzhviyuk, K. Shardina, A. Nechaev, M. Raev, S. Zamorina","doi":"10.15789/1563-0625-sot-2051","DOIUrl":null,"url":null,"abstract":"Graphene and its derivatives are increasingly used in biomedical research. Therefore, the mechanisms and consequences of the interaction of graphene nanoparticles with living objects are intensively studied. The immune system is involved in protecting the body and regulating its functions, so the question of the effect of graphene and its derivatives on immune cells is crucial. The specific response of monocytes, macrophages, and neutrophils to a stimulus is to increase the production of reactive oxygen species (ROS). Published data on graphene oxide (GO) and polyethylene glycol-modified graphene oxide (GO-PEG) effects on peripheral blood leukocytes are scarce and contradictory. It is due to variations in objects and conditions of study, along with the difference in particle concentrations. Thus, it was essential to evaluate the GO and GO-PEG effect on ROS production by human leukocytes. Our study aimed at the effect of particles of unmodified and PEG-modified graphene oxide (GO and GO-PEG) on the ROS production by peripheral blood leukocytes in not-stimulated and stimulated luminoldependent chemiluminescence (LCL) tests. ROS production was stimulated by opsonized zymosan (OZ). A hydrogen peroxide-luminol system was used for assessing the independent effect of GO nanoparticles on the quenching of ROS luminescence. Pristine GO (Ossila, Great Britain) nanoparticles were PEG-modified (GO-PEG). The average size of the GO flakes was 1-5 µm, the GO-PEG-flakes 569±14 nm, and the amount of PEG covering was ~ 20%. Nanoparticles were used at concentrations of 5; 2.5; 1.25 µg/ml. It has been established that GO-PEG nanoparticles in concentrations of 2.5 and 5 µg/ml suppressed ROS production in the spontaneous LCL test. At the same time, the GO effects showed a visible but a not significant tendency to inhibition of LCL. Similar results were obtained in the stimulated LCL test. However, when analyzing the process kinetics, both GO-PEG and GO decreased the ROS production, but mainly in the first minutes of the test. When analyzing the quenching effect of the LCL reaction in a cell-free system, there was no significant effect of GO and GO-PEG nanoparticles. Thus, the general vector of the obtained effects was associated with the suppression of ROS production. GO-PEG ROS-decreasing effects were more pronounced in comparison with unmodified GO. In general, we have confirmed the antioxidant effects of GO and GO-PEG using the LCL method. We can assume that in addition to the actual antioxidant effect of graphene nanoparticles, ROS production decreases due to the rapid GO uptake and blocking of several intracellular signals that induce an oxidative burst.","PeriodicalId":85139,"journal":{"name":"Medical immunology (London, England)","volume":"22 1","pages":"977-986"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical immunology (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15789/1563-0625-sot-2051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Graphene and its derivatives are increasingly used in biomedical research. Therefore, the mechanisms and consequences of the interaction of graphene nanoparticles with living objects are intensively studied. The immune system is involved in protecting the body and regulating its functions, so the question of the effect of graphene and its derivatives on immune cells is crucial. The specific response of monocytes, macrophages, and neutrophils to a stimulus is to increase the production of reactive oxygen species (ROS). Published data on graphene oxide (GO) and polyethylene glycol-modified graphene oxide (GO-PEG) effects on peripheral blood leukocytes are scarce and contradictory. It is due to variations in objects and conditions of study, along with the difference in particle concentrations. Thus, it was essential to evaluate the GO and GO-PEG effect on ROS production by human leukocytes. Our study aimed at the effect of particles of unmodified and PEG-modified graphene oxide (GO and GO-PEG) on the ROS production by peripheral blood leukocytes in not-stimulated and stimulated luminoldependent chemiluminescence (LCL) tests. ROS production was stimulated by opsonized zymosan (OZ). A hydrogen peroxide-luminol system was used for assessing the independent effect of GO nanoparticles on the quenching of ROS luminescence. Pristine GO (Ossila, Great Britain) nanoparticles were PEG-modified (GO-PEG). The average size of the GO flakes was 1-5 µm, the GO-PEG-flakes 569±14 nm, and the amount of PEG covering was ~ 20%. Nanoparticles were used at concentrations of 5; 2.5; 1.25 µg/ml. It has been established that GO-PEG nanoparticles in concentrations of 2.5 and 5 µg/ml suppressed ROS production in the spontaneous LCL test. At the same time, the GO effects showed a visible but a not significant tendency to inhibition of LCL. Similar results were obtained in the stimulated LCL test. However, when analyzing the process kinetics, both GO-PEG and GO decreased the ROS production, but mainly in the first minutes of the test. When analyzing the quenching effect of the LCL reaction in a cell-free system, there was no significant effect of GO and GO-PEG nanoparticles. Thus, the general vector of the obtained effects was associated with the suppression of ROS production. GO-PEG ROS-decreasing effects were more pronounced in comparison with unmodified GO. In general, we have confirmed the antioxidant effects of GO and GO-PEG using the LCL method. We can assume that in addition to the actual antioxidant effect of graphene nanoparticles, ROS production decreases due to the rapid GO uptake and blocking of several intracellular signals that induce an oxidative burst.