{"title":"Effect of hot pressing modification on surface properties of rubberwood (Hevea brasiliensis)","authors":"Zhipeng Zhu, Dengyun Tu, Ziwei Chen, Chen Chuanfu, Qiangfang Zhou","doi":"10.37763/WR.1336-4561/66.1.129140","DOIUrl":null,"url":null,"abstract":"This research aims to investigate the effect of thermal modification by hot pressing on surface characteristics of rubberwood. For this purpose, rubberwood specimens were thermally modified by hot pressing in an open system at three different temperatures (170, 185, and 200°C) for two different durations (1.5 or 3 h). Based on the results, the values of chromatic aberration (ΔE), contact angle and glossiness increased, and roughness decreased with increasing temperature and enlarging duration further. Although the contact angle had increased, it was still less than 90°. This aesthetic surface of rubberwood could be retained by using transparent organic coatings. The thermally modified rubberwood with excellent performance could be used as a material for solid wood flooring, wallboard, and furniture applications.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":"66 1","pages":"129-140"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/WR.1336-4561/66.1.129140","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 3
Abstract
This research aims to investigate the effect of thermal modification by hot pressing on surface characteristics of rubberwood. For this purpose, rubberwood specimens were thermally modified by hot pressing in an open system at three different temperatures (170, 185, and 200°C) for two different durations (1.5 or 3 h). Based on the results, the values of chromatic aberration (ΔE), contact angle and glossiness increased, and roughness decreased with increasing temperature and enlarging duration further. Although the contact angle had increased, it was still less than 90°. This aesthetic surface of rubberwood could be retained by using transparent organic coatings. The thermally modified rubberwood with excellent performance could be used as a material for solid wood flooring, wallboard, and furniture applications.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.