Potential outcomes and finite-population inference for M-estimators

IF 2.9 4区 经济学 Q1 ECONOMICS
Ruonan Xu
{"title":"Potential outcomes and finite-population inference for M-estimators","authors":"Ruonan Xu","doi":"10.1093/ectj/utaa022","DOIUrl":null,"url":null,"abstract":"\n When a sample is drawn from or coincides with a finite population, the uncertainty of the coefficient estimators is often reported assuming the population is effectively infinite. The recent literature on finite-population inference instead derives an alternative asymptotic variance of the ordinary least squares estimator. Here, I extend the results to the more general setting of M-estimators and also find that the usual robust ‘sandwich’ estimator is conservative. The proposed asymptotic variance of M-estimators accounts for two sources of variation. In addition to the usual sampling-based uncertainty arising from (possibly) not observing the entire population, there is also design-based uncertainty, which is usually ignored in the common inference method, resulting from lack of knowledge of the counterfactuals. Under this alternative framework, we can obtain smaller standard errors of M-estimators when the population is treated as finite.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utaa022","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utaa022","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

Abstract

When a sample is drawn from or coincides with a finite population, the uncertainty of the coefficient estimators is often reported assuming the population is effectively infinite. The recent literature on finite-population inference instead derives an alternative asymptotic variance of the ordinary least squares estimator. Here, I extend the results to the more general setting of M-estimators and also find that the usual robust ‘sandwich’ estimator is conservative. The proposed asymptotic variance of M-estimators accounts for two sources of variation. In addition to the usual sampling-based uncertainty arising from (possibly) not observing the entire population, there is also design-based uncertainty, which is usually ignored in the common inference method, resulting from lack of knowledge of the counterfactuals. Under this alternative framework, we can obtain smaller standard errors of M-estimators when the population is treated as finite.
m估计量的潜在结果和有限总体推断
当样本来自有限总体或与有限总体重合时,通常会报告系数估计量的不确定性,假设总体实际上是无限的。最近关于有限总体推断的文献推导了普通最小二乘估计量的另一种渐近方差。在这里,我将结果推广到M-估计量的更一般的设置,并发现通常的鲁棒“三明治”估计量是保守的。所提出的M-估计量的渐近方差解释了两个变化源。除了通常由于(可能)没有观察到整个群体而产生的基于采样的不确定性之外,还有基于设计的不确定性,这在常见的推理方法中通常被忽略,这是由于缺乏对反事实的了解。在这个替代框架下,当总体被视为有限时,我们可以获得较小的M-估计量的标准误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信