Sedimentology and stratigraphic evolution of fluvial–tidal transition reservoirs: an outcrop analog for the hydrocarbon-bearing Bahariya Formation, Western Desert, Egypt

IF 2 4区 地球科学 Q1 GEOLOGY
S. S. Selim
{"title":"Sedimentology and stratigraphic evolution of fluvial–tidal transition reservoirs: an outcrop analog for the hydrocarbon-bearing Bahariya Formation, Western Desert, Egypt","authors":"S. S. Selim","doi":"10.2110/jsr.2021.130","DOIUrl":null,"url":null,"abstract":"\n The deposits of the tidal–fluvial transition zone are one of the most significant and complicated components of marginal marine systems. Sedimentological studies of these deposits are necessary due to their heterogeneous nature, which is controlled by competing tidal and fluvial parameters. Outcrop studies are required to understand the architecture, sedimentology, and evolution of tidal–fluvial deposits. The Cenomanian upper unit of the Bahariya Formation in the northern part of the Western Desert of Egypt is a tide-dominated fluvio-estuarine deposit sourced from crystalline basement and Early Cretaceous siliciclastic sedimentary rocks that lie to the southeast and south. Based on sedimentary facies analysis and paleocurrent data, the upper Bahariya Formation is composed of six main architectural elements: 1) river-dominated, tide-influenced point bar, 2) tide-dominated, river-influenced point bar, 3) floodplain, 4) crevasse splay, 5) crevasse channel, and 6) mud plug. These elements are stacked in a multistory tidal–fluvial channel complex and associated depositional elements. The reconstructed paleochannels trend from southeast to northwest, and migrated to the east and southeast. The relative contribution of fluvial processes decreased upwards through the stacked stories, with a corresponding increase in the contribution of tidal processes that were associated with transgression. An understanding of the architecture and sedimentology of the tidal–fluvial transition from outcrop successions allows the improved characterization of tidal–fluvial point-bar reservoirs and associated elements.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2021.130","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The deposits of the tidal–fluvial transition zone are one of the most significant and complicated components of marginal marine systems. Sedimentological studies of these deposits are necessary due to their heterogeneous nature, which is controlled by competing tidal and fluvial parameters. Outcrop studies are required to understand the architecture, sedimentology, and evolution of tidal–fluvial deposits. The Cenomanian upper unit of the Bahariya Formation in the northern part of the Western Desert of Egypt is a tide-dominated fluvio-estuarine deposit sourced from crystalline basement and Early Cretaceous siliciclastic sedimentary rocks that lie to the southeast and south. Based on sedimentary facies analysis and paleocurrent data, the upper Bahariya Formation is composed of six main architectural elements: 1) river-dominated, tide-influenced point bar, 2) tide-dominated, river-influenced point bar, 3) floodplain, 4) crevasse splay, 5) crevasse channel, and 6) mud plug. These elements are stacked in a multistory tidal–fluvial channel complex and associated depositional elements. The reconstructed paleochannels trend from southeast to northwest, and migrated to the east and southeast. The relative contribution of fluvial processes decreased upwards through the stacked stories, with a corresponding increase in the contribution of tidal processes that were associated with transgression. An understanding of the architecture and sedimentology of the tidal–fluvial transition from outcrop successions allows the improved characterization of tidal–fluvial point-bar reservoirs and associated elements.
河流-潮汐过渡储层的沉积学和地层演化:埃及西部沙漠含烃Bahariya组的露头模拟
潮-河过渡带沉积物是边缘海相体系中最重要、最复杂的组成部分之一。由于这些沉积物的非均质性,受潮汐和河流参数的竞争控制,因此对它们进行沉积学研究是必要的。露头研究是了解结构、沉积学和潮汐-河流沉积演化的必要条件。位于埃及西部沙漠北部的巴哈里亚组塞诺曼尼亚上单元是一个以潮汐为主导的河流河口矿床,其来源为东南部和南部的结晶基底和早白垩世的硅屑沉积岩。根据沉积相分析和古水流资料,上巴哈里亚组由6个主要建筑元素组成:1)河流主导、受潮汐影响的点坝,2)潮汐主导、受河流影响的点坝,3)洪泛平原,4)决口张开,5)决口河道,6)泥塞。这些元素堆积在多层潮汐-河流复合体和相关的沉积元素中。重建的古河道走向由东南向西北,向东、东南方向迁移。在层叠层中,河流作用的相对贡献向上减小,与海侵有关的潮汐作用的相对贡献相应增大。对露头层序中潮汐-河流过渡的结构和沉积学的理解,可以改进潮汐-河流点坝储层和相关元素的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信