Extracting information from textual descriptions for actuarial applications

IF 1.5 Q3 BUSINESS, FINANCE
S. Manski, Kaixu Yang, Gee Y. Lee, T. Maiti
{"title":"Extracting information from textual descriptions for actuarial applications","authors":"S. Manski, Kaixu Yang, Gee Y. Lee, T. Maiti","doi":"10.1017/S1748499521000026","DOIUrl":null,"url":null,"abstract":"Abstract Initial insurance losses are often reported with a textual description of the claim. The claims manager must determine the adequate case reserve for each known claim. In this paper, we present a framework for predicting the amount of loss given a textual description of the claim using a large number of words found in the descriptions. Prior work has focused on classifying insurance claims based on keywords selected by a human expert, whereas in this paper the focus is on loss amount prediction with automatic word selection. In order to transform words into numeric vectors, we use word cosine similarities and word embedding matrices. When we consider all unique words found in the training dataset and impose a generalised additive model to the resulting explanatory variables, the resulting design matrix is high dimensional. For this reason, we use a group lasso penalty to reduce the number of coefficients in the model. The scalable, analytical framework proposed provides for a parsimonious and interpretable model. Finally, we discuss the implications of the analysis, including how the framework may be used by an insurance company and how the interpretation of the covariates can lead to significant policy change. The code can be found in the TAGAM R package (github.com/scottmanski/TAGAM).","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"15 1","pages":"605 - 622"},"PeriodicalIF":1.5000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1748499521000026","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499521000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Initial insurance losses are often reported with a textual description of the claim. The claims manager must determine the adequate case reserve for each known claim. In this paper, we present a framework for predicting the amount of loss given a textual description of the claim using a large number of words found in the descriptions. Prior work has focused on classifying insurance claims based on keywords selected by a human expert, whereas in this paper the focus is on loss amount prediction with automatic word selection. In order to transform words into numeric vectors, we use word cosine similarities and word embedding matrices. When we consider all unique words found in the training dataset and impose a generalised additive model to the resulting explanatory variables, the resulting design matrix is high dimensional. For this reason, we use a group lasso penalty to reduce the number of coefficients in the model. The scalable, analytical framework proposed provides for a parsimonious and interpretable model. Finally, we discuss the implications of the analysis, including how the framework may be used by an insurance company and how the interpretation of the covariates can lead to significant policy change. The code can be found in the TAGAM R package (github.com/scottmanski/TAGAM).
从精算应用程序的文本描述中提取信息
初始保险损失报告通常附有索赔的文字描述。理赔经理必须为每个已知的理赔确定足够的案件储备。在本文中,我们提出了一个框架,用于使用描述中发现的大量单词来预测索赔的文本描述的损失金额。先前的工作主要集中在基于人类专家选择的关键词对保险索赔进行分类,而本文的重点是基于自动选词的损失金额预测。为了将单词转换为数值向量,我们使用了单词余弦相似度和单词嵌入矩阵。当我们考虑在训练数据集中发现的所有唯一单词并对产生的解释变量施加广义加性模型时,得到的设计矩阵是高维的。出于这个原因,我们使用组套索惩罚来减少模型中系数的数量。所提出的可扩展的分析框架提供了一个简洁且可解释的模型。最后,我们讨论了分析的含义,包括保险公司如何使用框架以及协变量的解释如何导致重大的政策变化。代码可以在TAGAM R包中找到(github.com/scottmanski/TAGAM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信