A computational approach to estimate the flow and output parameters of various solar updraft tower plants and a proposed model for the best power output

IF 2 Q4 ENERGY & FUELS
R. Balijepalli, Chandramohan V.P., K. K
{"title":"A computational approach to estimate the flow and output parameters of various solar updraft tower plants and a proposed model for the best power output","authors":"R. Balijepalli, Chandramohan V.P., K. K","doi":"10.1080/14786451.2022.2133119","DOIUrl":null,"url":null,"abstract":"ABSTRACT Three different models were developed to examine the flow and thermodynamic characteristics of the solar updraft tower (SUT) power plant and the best model is proposed. A step is taken to find the location of the turbine to absorb maximum kinetic energy. It is found that the maximum and average air velocities inside model-I were higher (3.06 and 1.63 ms−1, respectively) compared to model–II (2.4 and 1.34 ms−1) and model-III (2.9 and 1.57 ms−1). The maximum air temperature inside the model-II was higher (322 K). Turbulent kinetic energy, power produced and overall efficiency were the best in model–II than the other two models. The present outcomes were validated with the literature data and observed a good match.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"41 1","pages":"2097 - 2120"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2022.2133119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Three different models were developed to examine the flow and thermodynamic characteristics of the solar updraft tower (SUT) power plant and the best model is proposed. A step is taken to find the location of the turbine to absorb maximum kinetic energy. It is found that the maximum and average air velocities inside model-I were higher (3.06 and 1.63 ms−1, respectively) compared to model–II (2.4 and 1.34 ms−1) and model-III (2.9 and 1.57 ms−1). The maximum air temperature inside the model-II was higher (322 K). Turbulent kinetic energy, power produced and overall efficiency were the best in model–II than the other two models. The present outcomes were validated with the literature data and observed a good match.
提出了一种估算各种上升气流塔式电站流量和输出参数的计算方法,并提出了最佳输出功率的计算模型
摘要针对太阳能上升气流塔式(SUT)电厂的流动和热力学特性,建立了3种不同的模型,并提出了最佳模型。下一步是找到涡轮吸收最大动能的位置。研究发现,与模式ii(2.4和1.34 ms−1)和模式iii(2.9和1.57 ms−1)相比,模式i内部的最大风速和平均风速分别为3.06和1.63 ms−1。ii型发动机内部最高气温更高(322 K),湍流动能、产生的功率和综合效率均以ii型发动机为最佳。本研究结果与文献资料进行了验证,并观察到良好的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
3.20%
发文量
52
期刊介绍: Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信