DENOVA: Predicting Five-Factor Model using Deep Learning based on ANOVA

M. Nasiri, H. Rahmani
{"title":"DENOVA: Predicting Five-Factor Model using Deep Learning based on ANOVA","authors":"M. Nasiri, H. Rahmani","doi":"10.22044/JADM.2021.10471.2186","DOIUrl":null,"url":null,"abstract":"Determining the personality dimensions of individuals is very important in psychological research. The most well-known example of personality dimensions is the Five-Factor Model (FFM). There are two approaches 1- Manual and 2- Automatic for determining the personality dimensions. In a manual approach, Psychologists discover these dimensions through personality questionnaires. As an automatic way, varied personal input types (textual/image/video) of people are gathered and analyzed for this purpose. In this paper, we proposed a method called DENOVA (DEep learning based on the ANOVA), which predicts FFM using deep learning based on the Analysis of variance (ANOVA) of words. For this purpose, DENOVA first applies ANOVA to select the most informative terms. Then, DENOVA employs Word2Vec to extract document embeddings. Finally, DENOVA uses Support Vector Machine (SVM), Logistic Regression, XGBoost, and Multilayer perceptron (MLP) as classifiers to predict FFM. The experimental results show that DENOVA outperforms on average, 6.91%, the state-of-the-art methods in predicting FFM with respect to accuracy.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.10471.2186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the personality dimensions of individuals is very important in psychological research. The most well-known example of personality dimensions is the Five-Factor Model (FFM). There are two approaches 1- Manual and 2- Automatic for determining the personality dimensions. In a manual approach, Psychologists discover these dimensions through personality questionnaires. As an automatic way, varied personal input types (textual/image/video) of people are gathered and analyzed for this purpose. In this paper, we proposed a method called DENOVA (DEep learning based on the ANOVA), which predicts FFM using deep learning based on the Analysis of variance (ANOVA) of words. For this purpose, DENOVA first applies ANOVA to select the most informative terms. Then, DENOVA employs Word2Vec to extract document embeddings. Finally, DENOVA uses Support Vector Machine (SVM), Logistic Regression, XGBoost, and Multilayer perceptron (MLP) as classifiers to predict FFM. The experimental results show that DENOVA outperforms on average, 6.91%, the state-of-the-art methods in predicting FFM with respect to accuracy.
DENOVA:基于ANOVA的深度学习预测五因素模型
确定个体的人格维度在心理学研究中是非常重要的。人格维度最著名的例子是五因素模型(FFM)。有两种方法1-手动和2-自动确定人格维度。在手工方法中,心理学家通过人格问卷来发现这些维度。作为一种自动化的方式,收集和分析人们的各种个人输入类型(文本/图像/视频)。在本文中,我们提出了一种称为DENOVA(基于方差分析的深度学习)的方法,该方法使用基于单词方差分析(ANOVA)的深度学习来预测FFM。为此,DENOVA首先应用方差分析来选择信息量最大的术语。然后,DENOVA使用Word2Vec提取文档嵌入。最后,DENOVA使用支持向量机(SVM)、逻辑回归、XGBoost和多层感知器(MLP)作为分类器来预测FFM。实验结果表明,DENOVA在预测FFM的准确率方面平均优于最先进的方法,达到6.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信