Inequalities from Lorentz-Finsler norms

IF 0.9 4区 数学 Q2 MATHEMATICS
N. Minculete, C. Pfeifer, N. Voicu
{"title":"Inequalities from Lorentz-Finsler norms","authors":"N. Minculete, C. Pfeifer, N. Voicu","doi":"10.7153/mia-2021-24-26","DOIUrl":null,"url":null,"abstract":"We show that Lorentz-Finsler geometry offers a powerful tool in obtaining inequalities. With this aim, we first point out that a series of famous inequalities such as: the (weighted) arithmetic-geometric mean inequality, Acz\\'el's, Popoviciu's and Bellman's inequalities, are all particular cases of a reverse Cauchy-Schwarz, respectively, of a reverse triangle inequality holding in Lorentz-Finsler geometry. Then, we use the same method to prove some completely new inequalities, including two refinements of Acz\\'el's inequality.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-26","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We show that Lorentz-Finsler geometry offers a powerful tool in obtaining inequalities. With this aim, we first point out that a series of famous inequalities such as: the (weighted) arithmetic-geometric mean inequality, Acz\'el's, Popoviciu's and Bellman's inequalities, are all particular cases of a reverse Cauchy-Schwarz, respectively, of a reverse triangle inequality holding in Lorentz-Finsler geometry. Then, we use the same method to prove some completely new inequalities, including two refinements of Acz\'el's inequality.
Lorentz-Finsler范数中的不等式
我们证明了洛伦兹-芬斯勒几何为求解不等式提供了一个强有力的工具。为此,我们首先指出了一系列著名的不等式,如(加权的)算术几何平均不等式,Acz\ el不等式,Popoviciu不等式和Bellman不等式,分别是洛伦兹-芬斯勒几何中成立的逆三角形不等式的逆Cauchy-Schwarz的特殊情况。然后,我们用同样的方法证明了一些全新的不等式,包括Acz\ el不等式的两个改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信