A. S. Shaikh, M. Rashidi, Kevin Minet-Lallemand, E. Hryha
{"title":"On as-built microstructure and necessity of solution treatment in additively manufactured Inconel 939","authors":"A. S. Shaikh, M. Rashidi, Kevin Minet-Lallemand, E. Hryha","doi":"10.1080/00325899.2022.2041787","DOIUrl":null,"url":null,"abstract":"ABSTRACT Increased adoption of additively manufactured superalloys has led to the consideration of revised heat treatment approaches for these materials. The rapid cooling during additive manufacturing processes has been seen to suppress gamma prime (γ′) precipitation, which has raised the possibilities for omitting the high-temperature solution treatment step that usually precedes ageing heat treatment for these alloys. In this work, the as-built microstructure of a high gamma prime fraction superalloy Inconel 939 is presented, where the absence of any γ′ precipitation is notable. However, transmission electron microscopy shows the presence of nano-sized Eta (η) phase. It is shown that the omission of solution treatment leads to the growth of the deleterious η phase upon ageing, which results in embrittlement in tensile loading. It is concluded that at least for this particular alloy the solution treatment plays a critical role in the establishment of the required microstructure and hence cannot be omitted from the heat treatment.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2041787","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT Increased adoption of additively manufactured superalloys has led to the consideration of revised heat treatment approaches for these materials. The rapid cooling during additive manufacturing processes has been seen to suppress gamma prime (γ′) precipitation, which has raised the possibilities for omitting the high-temperature solution treatment step that usually precedes ageing heat treatment for these alloys. In this work, the as-built microstructure of a high gamma prime fraction superalloy Inconel 939 is presented, where the absence of any γ′ precipitation is notable. However, transmission electron microscopy shows the presence of nano-sized Eta (η) phase. It is shown that the omission of solution treatment leads to the growth of the deleterious η phase upon ageing, which results in embrittlement in tensile loading. It is concluded that at least for this particular alloy the solution treatment plays a critical role in the establishment of the required microstructure and hence cannot be omitted from the heat treatment.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.