A relation between higher-rank PT-stable objects and quotients of coherent sheaves

IF 0.5 4区 数学 Q3 MATHEMATICS
J. Lo
{"title":"A relation between higher-rank PT-stable objects and quotients of coherent sheaves","authors":"J. Lo","doi":"10.1215/21562261-2021-0015","DOIUrl":null,"url":null,"abstract":"On a smooth projective threefold, we construct an essentially surjective functor $\\mathcal{F}$ from a category of two-term complexes to a category of quotients of coherent sheaves, and describe the fibers of this functor. Under a coprime assumption on rank and degree, the domain of $\\mathcal{F}$ coincides with the category of higher-rank PT stable objects, which appear on one side of Toda's higher-rank DT/PT correspondence formula. The codomain of $\\mathcal{F}$ is the category of objects that appear on one side of another correspondence formula by Gholampour-Kool, between the generating series of topological Euler characteristics of two types of quot schemes.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

On a smooth projective threefold, we construct an essentially surjective functor $\mathcal{F}$ from a category of two-term complexes to a category of quotients of coherent sheaves, and describe the fibers of this functor. Under a coprime assumption on rank and degree, the domain of $\mathcal{F}$ coincides with the category of higher-rank PT stable objects, which appear on one side of Toda's higher-rank DT/PT correspondence formula. The codomain of $\mathcal{F}$ is the category of objects that appear on one side of another correspondence formula by Gholampour-Kool, between the generating series of topological Euler characteristics of two types of quot schemes.
高阶pt稳定对象与相干束商的关系
在光滑射影三重体上,从两项复范畴到相干束商范畴构造了一个本质满射函子$\mathcal{F}$,并描述了该函子的纤维。在秩和度的素数假设下,$\mathcal{F}$的定域与高阶PT稳定对象的范畴重合,它们出现在Toda的高阶DT/PT对应公式的一侧。$\mathcal{F}$的上域是出现在Gholampour-Kool的另一个对应公式的一侧的对象的类别,在两种类型的“格式”的拓扑欧拉特征的生成序列之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信