Bounds on Wahl singularities from symplectic topology

IF 1.2 1区 数学 Q1 MATHEMATICS
J. Evans, I. Smith
{"title":"Bounds on Wahl singularities from symplectic topology","authors":"J. Evans, I. Smith","doi":"10.14231/ag-2020-003","DOIUrl":null,"url":null,"abstract":"Let X be a minimal surface of general type with positive geometric genus ($b_+ > 1$) and let $K^2$ be the square of its canonical class. Building on work of Khodorovskiy and Rana, we prove that if X develops a Wahl singularity of length $\\ell$ in a Q-Gorenstein degeneration, then $\\ell \\leq 4K^2 + 7$. This improves on the current best-known upper bound due to Lee ($\\ell \\leq 400(K^2)^4$). Our bound follows from a stronger theorem constraining symplectic embeddings of certain rational homology balls in surfaces of general type. In particular, we show that if the rational homology ball $B_{p,1}$ embeds symplectically in a quintic surface, then $p \\leq 12$, partially answering the symplectic version of a question of Kronheimer.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2020-003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Let X be a minimal surface of general type with positive geometric genus ($b_+ > 1$) and let $K^2$ be the square of its canonical class. Building on work of Khodorovskiy and Rana, we prove that if X develops a Wahl singularity of length $\ell$ in a Q-Gorenstein degeneration, then $\ell \leq 4K^2 + 7$. This improves on the current best-known upper bound due to Lee ($\ell \leq 400(K^2)^4$). Our bound follows from a stronger theorem constraining symplectic embeddings of certain rational homology balls in surfaces of general type. In particular, we show that if the rational homology ball $B_{p,1}$ embeds symplectically in a quintic surface, then $p \leq 12$, partially answering the symplectic version of a question of Kronheimer.
辛拓扑中Wahl奇点的界
设X是具有正几何亏格($b_+>1$)的一般类型的极小曲面,设$K^2$是其规范类的平方。在Khodorovskiy和Rana工作的基础上,我们证明了如果X在Q-Gorenstein退化中发展出长度为$\ell$的Wahl奇点,那么$\ell\leq4K^2+7$。这改善了李目前最著名的上限($\ell\leq 400(K^2)^4$)。我们的界来自于一个更强的定理,该定理约束了一般类型曲面中某些有理同调球的辛嵌入。特别地,我们证明了如果有理同调球$B_{p,1}$辛嵌入五次曲面,那么$p\leq12$,部分回答了Kronheimer问题的辛版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信