{"title":"Cycle-by-Cycle Combustion Optimisation: Calibration of Data-based Models and Improvements of Computational Efficiency","authors":"T. Makowicki, M. Bitzer, K. Graichen","doi":"10.1080/13873954.2022.2052111","DOIUrl":null,"url":null,"abstract":"ABSTRACT Modern combustion engines require an efficient cycle-by-cycle fuel injection control scheme to optimise the single combustion events during transient operation. The online optimisation of the respective control inputs typically needs accurate while sufficiently simple models of the combustion quantities. Based on a recently presented cycle-by-cycle optimisation scheme with a hybrid model, this paper focuses on two aspects to enhance the accuracy as well as computational efficiency for an online computation. Firstly, the proper calibration of Gaussian processes nested in a combined physics-/data-based model structure is addressed. Respective test bench measurements and a tailored two-step training procedure are presented. Secondly, the computational efficiency of the online cycle-by-cycle optimisation is increased by mapping computationally intensive calculations into the data-based models through offline preprocessing. In addition, a data-driven approximation of the complete optimisation scheme is proposed to further minimise the computational demand. Simulation studies are used to evaluate the performance of these approaches.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"110 - 141"},"PeriodicalIF":1.8000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2022.2052111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Modern combustion engines require an efficient cycle-by-cycle fuel injection control scheme to optimise the single combustion events during transient operation. The online optimisation of the respective control inputs typically needs accurate while sufficiently simple models of the combustion quantities. Based on a recently presented cycle-by-cycle optimisation scheme with a hybrid model, this paper focuses on two aspects to enhance the accuracy as well as computational efficiency for an online computation. Firstly, the proper calibration of Gaussian processes nested in a combined physics-/data-based model structure is addressed. Respective test bench measurements and a tailored two-step training procedure are presented. Secondly, the computational efficiency of the online cycle-by-cycle optimisation is increased by mapping computationally intensive calculations into the data-based models through offline preprocessing. In addition, a data-driven approximation of the complete optimisation scheme is proposed to further minimise the computational demand. Simulation studies are used to evaluate the performance of these approaches.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.