On the first eigenvalue of the Laplacian on compact surfaces of genus three

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Ros
{"title":"On the first eigenvalue of the Laplacian on compact surfaces of genus three","authors":"A. Ros","doi":"10.2969/jmsj/85898589","DOIUrl":null,"url":null,"abstract":"For any compact riemannian surface of genus three $(\\Sigma,ds^2)$ Yang and Yau proved that the product of the first eigenvalue of the Laplacian $\\lambda_1(ds^2)$ and the area $Area(ds^2)$ is bounded above by $24\\pi$. In this paper we improve the result and we show that $\\lambda_1(ds^2)Area(ds^2)\\leq16(4-\\sqrt{7})\\pi \\approx 21.668\\,\\pi$. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value $\\approx 21.414\\,\\pi$.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/85898589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

For any compact riemannian surface of genus three $(\Sigma,ds^2)$ Yang and Yau proved that the product of the first eigenvalue of the Laplacian $\lambda_1(ds^2)$ and the area $Area(ds^2)$ is bounded above by $24\pi$. In this paper we improve the result and we show that $\lambda_1(ds^2)Area(ds^2)\leq16(4-\sqrt{7})\pi \approx 21.668\,\pi$. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value $\approx 21.414\,\pi$.
关于亏格三的紧致曲面上拉普拉斯算子的第一特征值
对于任何亏格为3$(\Sigma,ds^2)$Yang和Yau的紧致黎曼曲面,证明了拉普拉斯算子$\lambda_1(ds^2)$的第一特征值与面积$area(ds ^2)$之积的上界为$24\pi$。在本文中,我们改进了结果,并证明了$\lambda_1(ds^2)Area(ds ^2)\leq16(4-\sqrt{7})\pi\约21.668\,\pi$。关于界的锐度,对于双曲克莱因四次曲面的数值计算,给出了值$\约21.414\,\pi$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信