Existence, uniqueness, and asymptotic stability results for the 3-D steady and unsteady Navier–Stokes equations on multi-connected domains with inhomogeneous boundary conditions
{"title":"Existence, uniqueness, and asymptotic stability results for the 3-D steady and unsteady Navier–Stokes equations on multi-connected domains with inhomogeneous boundary conditions","authors":"J. Avrin","doi":"10.3233/asy-221816","DOIUrl":null,"url":null,"abstract":"We consider both stationary and time-dependent solutions of the 3-D Navier–Stokes equations (NSE) on a multi-connected bounded domain Ω ⊂ R 3 with inhomogeneous boundary values on ∂ Ω = Γ; here Γ is a union of disjoint surfaces Γ 0 , Γ 1 , … , Γ l . Our starting point is Leray’s classic problem, which is to find a weak solution u ∈ H 1 ( Ω ) of the stationary problem assuming that on the boundary u = β ∈ H 1 / 2 ( Γ ). The general flux condition ∑ j = 0 l ∫ Γ j β · n d S = 0 must be satisfied due to compatibility considerations. Early results on this problem including the initial results in (J. Math. Pures Appl. 12 (1933) 1–82) assumed the more restrictive flux condition ∫ Γ j β · n d S = 0 for each j = 1 , … , l. More recent results, of which those in (An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II 1994 Springer–Verlag) and (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are particularly representative, assume only the general flux condition in exchange for size restrictions on the data. In this paper we also assume only the general flux condition throughout, and for virtually the same size restrictions on the data as in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) we obtain the existence of a weak solution that matches that found in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) when the assumptions imposed here and those assumed in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are both met; additionally we demonstrate that this solution is unique. For slightly stronger size restrictions we obtain the existence and uniqueness of solutions of both Leray’s problem and global mild solutions of the corresponding time-dependent problem, while showing that both the stationary and time-dependent solutions we construct are a bit stronger than weak solutions. The settings in which we establish our results allow us to culminate our discussion by showing that our time-dependent solutions converge to each other exponentially in time, so that in particular our stationary solutions are asymptotically stable. We also discuss additional features which allow for data of increased size on certain domains, including those which are thin in a generalized sense.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-221816","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We consider both stationary and time-dependent solutions of the 3-D Navier–Stokes equations (NSE) on a multi-connected bounded domain Ω ⊂ R 3 with inhomogeneous boundary values on ∂ Ω = Γ; here Γ is a union of disjoint surfaces Γ 0 , Γ 1 , … , Γ l . Our starting point is Leray’s classic problem, which is to find a weak solution u ∈ H 1 ( Ω ) of the stationary problem assuming that on the boundary u = β ∈ H 1 / 2 ( Γ ). The general flux condition ∑ j = 0 l ∫ Γ j β · n d S = 0 must be satisfied due to compatibility considerations. Early results on this problem including the initial results in (J. Math. Pures Appl. 12 (1933) 1–82) assumed the more restrictive flux condition ∫ Γ j β · n d S = 0 for each j = 1 , … , l. More recent results, of which those in (An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II 1994 Springer–Verlag) and (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are particularly representative, assume only the general flux condition in exchange for size restrictions on the data. In this paper we also assume only the general flux condition throughout, and for virtually the same size restrictions on the data as in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) we obtain the existence of a weak solution that matches that found in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) when the assumptions imposed here and those assumed in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are both met; additionally we demonstrate that this solution is unique. For slightly stronger size restrictions we obtain the existence and uniqueness of solutions of both Leray’s problem and global mild solutions of the corresponding time-dependent problem, while showing that both the stationary and time-dependent solutions we construct are a bit stronger than weak solutions. The settings in which we establish our results allow us to culminate our discussion by showing that our time-dependent solutions converge to each other exponentially in time, so that in particular our stationary solutions are asymptotically stable. We also discuss additional features which allow for data of increased size on certain domains, including those which are thin in a generalized sense.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.