Syafiqah Md Nadzir, N. Yusof, Norazela Nordin, A. Kamari, Mohd Nur Ashraf Mohd Yusoff
{"title":"A review of microalgal cell wall composition and degradation to enhance the recovery of biomolecules for biofuel production","authors":"Syafiqah Md Nadzir, N. Yusof, Norazela Nordin, A. Kamari, Mohd Nur Ashraf Mohd Yusoff","doi":"10.1080/17597269.2023.2197730","DOIUrl":null,"url":null,"abstract":"Abstract Microalgal biomass has received much attention as a renewable energy source and a possible replacement for petroleum-based fuels. Currently, mechanical, thermal, and chemical cell disruption methods are limited in terms of economics, sustainability, and environmental friendliness. Because of this, biological methods are preferred. The structure and composition of cell walls in commonly used commercial microalgae, as well as the production of lipid and carbohydrate biomolecules for microalgal biofuel, are discussed in this paper. Furthermore, the advantages and disadvantages of various mechanical and non-mechanical cell disruption methods for recovering biomolecules from microalgae are compared. The current biological methods of cell disruption are investigated, such as gene manipulation and autolysis. The relationship between autolysis and programmed cell death and factors influencing the process are also discussed. This review will help researchers select the proper method for recovering biomolecules from microalgae. The findings should expand the use of autolytic biological approaches for economic cell disruption in biofuel commercialisation.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"14 1","pages":"979 - 997"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2197730","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Microalgal biomass has received much attention as a renewable energy source and a possible replacement for petroleum-based fuels. Currently, mechanical, thermal, and chemical cell disruption methods are limited in terms of economics, sustainability, and environmental friendliness. Because of this, biological methods are preferred. The structure and composition of cell walls in commonly used commercial microalgae, as well as the production of lipid and carbohydrate biomolecules for microalgal biofuel, are discussed in this paper. Furthermore, the advantages and disadvantages of various mechanical and non-mechanical cell disruption methods for recovering biomolecules from microalgae are compared. The current biological methods of cell disruption are investigated, such as gene manipulation and autolysis. The relationship between autolysis and programmed cell death and factors influencing the process are also discussed. This review will help researchers select the proper method for recovering biomolecules from microalgae. The findings should expand the use of autolytic biological approaches for economic cell disruption in biofuel commercialisation.
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.