{"title":"Corn Disease Detection Based on an Improved YOLOX-Tiny Network Model","authors":"Shanni Li, Zhensheng Yang, Huabei Nie, Xiao Chen","doi":"10.4018/ijcini.309990","DOIUrl":null,"url":null,"abstract":"In order to detect corn diseases accurately and quickly and reduce the impact of corn diseases on yield and quality, this paper proposes an improved object detection network named YOLOX-Tiny, which fuses convolutional attention module (CBAM), mixup data enhancement strategy, and center IOU loss function. The detection network uses the CSPNet network model as the backbone network and adds the CBAM to the feature pyramid network (FPN) of the structure, which re-assigns the feature maps' weight of different channels to enhance the extraction of deep information from the structure. The performance evaluation and comparison results of the methods show that the improved YOLOX-Tiny object detection network can effectively detect three common corn diseases, such as cercospora grayspot, northern blight, and commonrust. Compared with the traditional neural network models (90.89% of VGG-16, 97.32% of YOLOv4-tiny, 97.85% of YOLOX-Tiny, 97.91% of ResNet-50, and 97.31% of Faster RCNN), the presented improved YOLOX-Tiny network has higher accuracy.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.309990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In order to detect corn diseases accurately and quickly and reduce the impact of corn diseases on yield and quality, this paper proposes an improved object detection network named YOLOX-Tiny, which fuses convolutional attention module (CBAM), mixup data enhancement strategy, and center IOU loss function. The detection network uses the CSPNet network model as the backbone network and adds the CBAM to the feature pyramid network (FPN) of the structure, which re-assigns the feature maps' weight of different channels to enhance the extraction of deep information from the structure. The performance evaluation and comparison results of the methods show that the improved YOLOX-Tiny object detection network can effectively detect three common corn diseases, such as cercospora grayspot, northern blight, and commonrust. Compared with the traditional neural network models (90.89% of VGG-16, 97.32% of YOLOv4-tiny, 97.85% of YOLOX-Tiny, 97.91% of ResNet-50, and 97.31% of Faster RCNN), the presented improved YOLOX-Tiny network has higher accuracy.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.