Free Stein irregularity and dimension

IF 0.7 4区 数学 Q2 MATHEMATICS
I. Charlesworth, Brent Nelson
{"title":"Free Stein irregularity and dimension","authors":"I. Charlesworth, Brent Nelson","doi":"10.7900/jot.2019aug29.2271","DOIUrl":null,"url":null,"abstract":"We introduce a free probabilistic quantity called free Stein irregularity, which is defined in terms of free Stein discrepancies. It turns out that this quantity is related via a simple formula to the Murray-von Neumann dimension of the closure of the domain of the adjoint of the non-commutative Jacobian associated to Voiculescu's free difference quotients. We call this dimension the free Stein dimension, and show that it is a ∗-algebra invariant. We relate these quantities to the free Fisher information, the non-microstates free entropy, and the non-microstates free entropy dimension. In the one-variable case, we show that the free Stein dimension agrees with the free entropy dimension, and in the multivariable case compute it in a number of examples.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019aug29.2271","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce a free probabilistic quantity called free Stein irregularity, which is defined in terms of free Stein discrepancies. It turns out that this quantity is related via a simple formula to the Murray-von Neumann dimension of the closure of the domain of the adjoint of the non-commutative Jacobian associated to Voiculescu's free difference quotients. We call this dimension the free Stein dimension, and show that it is a ∗-algebra invariant. We relate these quantities to the free Fisher information, the non-microstates free entropy, and the non-microstates free entropy dimension. In the one-variable case, we show that the free Stein dimension agrees with the free entropy dimension, and in the multivariable case compute it in a number of examples.
自由斯坦因不规则性和尺寸
我们引入了一个自由的概率量,称为自由斯坦不规则,它是根据自由斯坦差异来定义的。结果是这个量通过一个简单的公式与非交换雅可比矩阵与Voiculescu的自由差商相关的共轭域的闭包的Murray-von Neumann维数有关。我们称这个维数为自由斯坦维数,并证明它是一个* -代数不变量。我们将这些量与自由费雪信息、非微观状态自由熵和非微观状态自由熵维度联系起来。在单变量情况下,我们证明了自由斯坦维与自由熵维是一致的,在多变量情况下,我们用一些例子来计算它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信