Partitioning of Any Infinite Set with the Aid of Non-Surjective Injective Maps and the Study of a Remarkable Semigroup

Charif Harrafa
{"title":"Partitioning of Any Infinite Set with the Aid of Non-Surjective Injective Maps and the Study of a Remarkable Semigroup","authors":"Charif Harrafa","doi":"10.4236/ojdm.2020.103008","DOIUrl":null,"url":null,"abstract":"In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of non-surjective injective maps. The non-surjective injective maps from an infinite set to itself constitute a semigroup for the law of composition bundled with certain properties allowing us to prove the existence of remarkable elements. Not to mention a compatible equivalence relation that allows transferring the said law to the quotient set, which can be provided with a lattice structure. Finally, we will present the concept of Co-injectivity and some of its properties.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ojdm.2020.103008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of non-surjective injective maps. The non-surjective injective maps from an infinite set to itself constitute a semigroup for the law of composition bundled with certain properties allowing us to prove the existence of remarkable elements. Not to mention a compatible equivalence relation that allows transferring the said law to the quotient set, which can be provided with a lattice structure. Finally, we will present the concept of Co-injectivity and some of its properties.
利用非满射内射映射对任意无限集的划分及一个显著半群的研究
本文给出了利用非满射内射映射对任意无限集进行分区的一种特别显著的方法。从无限集到自身的非满射单射映射构成了一个符合复合律的半群,并结合了一些性质,使我们能够证明显著元素的存在性。更不用说相容的等价关系,允许将上述定律转移到商集上,商集可以提供晶格结构。最后,我们将提出协注入的概念和它的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信