{"title":"Prediction of energy dissipation of off-road vehicles using smoothed-particle hydrodynamics techniques","authors":"Fatemeh Gheshlaghi, A. Mardani, Zeinab El-Sayegh","doi":"10.1504/ijvsmt.2020.10034040","DOIUrl":null,"url":null,"abstract":"This paper studies the energy dissipated during experimental and simulated procedures for the pressure-sinkage and shear-strength test. These tests are performed using a clayey-loam soil and modelled as smoothed-particle hydrodynamics (SPH) technique in Visual Environment's Pam-Crash software. The hydrodynamic elastic plastic material is used to define the equation of state for the clayey-loam soil. The soil is modelled at five different levels of compaction to represent multi-pass of a tyre over soil. The soil calibration is performed using the pressure-sinkage and direct shear-strength test and validated using experimental data from a soil bin facility. The energy dissipation is calculated using the soil sinkage values at every pass of wheel. Finally, the results of experimental and simulation dissipation energy are discussed and the effect of the tyre multi-pass on dissipated energy is investigated and presented. This research will further continue to model an agricultural FEA tyre over the clayey-loam soil to compute tyre performance and interaction characteristics.","PeriodicalId":35145,"journal":{"name":"International Journal of Vehicle Systems Modelling and Testing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Systems Modelling and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvsmt.2020.10034040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper studies the energy dissipated during experimental and simulated procedures for the pressure-sinkage and shear-strength test. These tests are performed using a clayey-loam soil and modelled as smoothed-particle hydrodynamics (SPH) technique in Visual Environment's Pam-Crash software. The hydrodynamic elastic plastic material is used to define the equation of state for the clayey-loam soil. The soil is modelled at five different levels of compaction to represent multi-pass of a tyre over soil. The soil calibration is performed using the pressure-sinkage and direct shear-strength test and validated using experimental data from a soil bin facility. The energy dissipation is calculated using the soil sinkage values at every pass of wheel. Finally, the results of experimental and simulation dissipation energy are discussed and the effect of the tyre multi-pass on dissipated energy is investigated and presented. This research will further continue to model an agricultural FEA tyre over the clayey-loam soil to compute tyre performance and interaction characteristics.
期刊介绍:
IJVSMT provides a resource of information for the scientific and engineering community working with ground vehicles. Emphases are placed on novel computational and testing techniques that are used by automotive engineers and scientists.