Analysis of breast cancer data in framework of a GPD model with interval censoring

IF 0.6 Q4 STATISTICS & PROBABILITY
Meghlaoui Dakhmouche, Oussama Bahi
{"title":"Analysis of breast cancer data in framework of a GPD model with interval censoring","authors":"Meghlaoui Dakhmouche, Oussama Bahi","doi":"10.1285/I20705948V12N2P380","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in a hypothesis testing problem within the framework of a GPD model with interval censoring. For this purpose, we rst develop the calculation of the likelihood function using conditional probabilities to achieve the same expression proposed by Klein and Moeschberger. Next, we show that the properties of the maximum pseudo-likelihood estimates of the model parameters, and essentially the asymptotic normality, are preserved. Finally, we built a hypothesis testing to compare two types of breast cancer treatment as part of the model mentioned above.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"380-391"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N2P380","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N2P380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we are interested in a hypothesis testing problem within the framework of a GPD model with interval censoring. For this purpose, we rst develop the calculation of the likelihood function using conditional probabilities to achieve the same expression proposed by Klein and Moeschberger. Next, we show that the properties of the maximum pseudo-likelihood estimates of the model parameters, and essentially the asymptotic normality, are preserved. Finally, we built a hypothesis testing to compare two types of breast cancer treatment as part of the model mentioned above.
区间筛选GPD模型框架下乳腺癌数据分析
在这项工作中,我们感兴趣的是在具有区间审查的GPD模型框架内的假设检验问题。为此,我们首先开发了使用条件概率的似然函数的计算,以实现Klein和Moeschberger提出的相同表达式。接下来,我们证明了模型参数的最大伪似然估计的性质,本质上是渐近正态性,是保留的。最后,作为上述模型的一部分,我们建立了一个假设检验来比较两种类型的乳腺癌治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信