{"title":"Generalized scale functions for spectrally negative Lévy processes","authors":"J. Contreras, V. Rivero","doi":"10.30757/ALEA.v20-24","DOIUrl":null,"url":null,"abstract":"For a spectrally negative L\\'evy process, scale functions appear in the solution of two-sided exit problems, and in particular in relation with the Laplace transform of the first time it exits a closed interval. In this paper, we consider the Laplace transform of more general functionals, which can depend simultaneously on the values of the process and its supremum up to the exit time. These quantities will be expressed in terms of generalized scale functions, which can be defined using excursion theory. In the case the functional does not depend on the supremum, these scale functions coincide with the ones found on the literature, and therefore the results in this work are an extension of them.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v20-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
For a spectrally negative L\'evy process, scale functions appear in the solution of two-sided exit problems, and in particular in relation with the Laplace transform of the first time it exits a closed interval. In this paper, we consider the Laplace transform of more general functionals, which can depend simultaneously on the values of the process and its supremum up to the exit time. These quantities will be expressed in terms of generalized scale functions, which can be defined using excursion theory. In the case the functional does not depend on the supremum, these scale functions coincide with the ones found on the literature, and therefore the results in this work are an extension of them.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.