Boundary Element Crystal Plasticity Method

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
I. Benedetti, V. Gulizzi, V. Mallardo
{"title":"Boundary Element Crystal Plasticity Method","authors":"I. Benedetti, V. Gulizzi, V. Mallardo","doi":"10.1142/S1756973717400030","DOIUrl":null,"url":null,"abstract":"A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"8 1","pages":"1740003"},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400030","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.
边界元晶体塑性法
介绍了一种小应变晶体塑性的三维边界元方法。该方法是针对多晶聚集体开发的,它利用一组边界积分方程来模拟单个颗粒,这些颗粒被表示为各向异性弹塑性域。晶体塑性模型采用初始应变边界积分法。讨论了各向异性弹塑性晶界方程中强奇异体积积分的积分问题。Voronoi-tessellation微形态使用非结构化边界和体积网格进行离散化。提出并讨论了一种具有速率相关流动和硬化规则的晶界增量/迭代算法。通过数值模拟验证了该方法的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信