{"title":"Boundary Element Crystal Plasticity Method","authors":"I. Benedetti, V. Gulizzi, V. Mallardo","doi":"10.1142/S1756973717400030","DOIUrl":null,"url":null,"abstract":"A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"8 1","pages":"1740003"},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400030","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.