-PERPENDICULAR WIDE SUBCATEGORIES

IF 0.8 2区 数学 Q2 MATHEMATICS
A. B. Buan, Eric J. Hanson
{"title":"-PERPENDICULAR WIDE SUBCATEGORIES","authors":"A. B. Buan, Eric J. Hanson","doi":"10.1017/nmj.2023.16","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline2.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a finite-dimensional algebra. A wide subcategory of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline3.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is called <jats:italic>left finite</jats:italic> if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline4.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> arising from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline5.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline6.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction. This leads to a natural way to extend the definition of the “<jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline7.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-cluster morphism category” of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline8.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline9.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting finite case and by Igusa–Todorov in the hereditary case.</jats:p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.16","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $\Lambda $ be a finite-dimensional algebra. A wide subcategory of $\mathsf {mod}\Lambda $ is called left finite if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of $\mathsf {mod}\Lambda $ arising from $\tau $ -tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further $\tau $ -tilting reduction. This leads to a natural way to extend the definition of the “ $\tau $ -cluster morphism category” of $\Lambda $ to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the $\tau $ -tilting finite case and by Igusa–Todorov in the hereditary case.
-垂直的宽子类别
设$\Lambda $是一个有限维代数。如果包含$\mathsf {mod}\Lambda $的最小扭转类是功能有限的,则称其为左有限子范畴。本文证明了由$\tau $ -倾斜约简产生的$\mathsf {mod}\Lambda $的宽子范畴正是左有限宽子范畴的Serre子范畴。因此,我们证明在进一步的$\tau $ -倾斜约简下,这些子类别的类是封闭的。这导致了将$\Lambda $的“$\tau $ -簇态射范畴”的定义扩展到任意有限维代数的自然方法。这个类别是最近由Buan-Marsh在$\tau $ -倾斜有限情况下和Igusa-Todorov在遗传情况下构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信