{"title":"-PERPENDICULAR WIDE SUBCATEGORIES","authors":"A. B. Buan, Eric J. Hanson","doi":"10.1017/nmj.2023.16","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline2.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a finite-dimensional algebra. A wide subcategory of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline3.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is called <jats:italic>left finite</jats:italic> if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline4.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> arising from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline5.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline6.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction. This leads to a natural way to extend the definition of the “<jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline7.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-cluster morphism category” of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline8.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline9.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting finite case and by Igusa–Todorov in the hereditary case.</jats:p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.16","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Let
$\Lambda $
be a finite-dimensional algebra. A wide subcategory of
$\mathsf {mod}\Lambda $
is called left finite if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of
$\mathsf {mod}\Lambda $
arising from
$\tau $
-tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further
$\tau $
-tilting reduction. This leads to a natural way to extend the definition of the “
$\tau $
-cluster morphism category” of
$\Lambda $
to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the
$\tau $
-tilting finite case and by Igusa–Todorov in the hereditary case.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.