Impact of correlated observation errors on the conditioning of variational data assimilation problems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
O. Goux, S. Gürol, A. Weaver, Y. Diouane, Oliver Guillet
{"title":"Impact of correlated observation errors on the conditioning of variational data assimilation problems","authors":"O. Goux, S. Gürol, A. Weaver, Y. Diouane, Oliver Guillet","doi":"10.1002/nla.2529","DOIUrl":null,"url":null,"abstract":"An important class of nonlinear weighted least‐squares problems arises from the assimilation of observations in atmospheric and ocean models. In variational data assimilation, inverse error covariance matrices define the weighting matrices of the least‐squares problem. For observation errors, a diagonal matrix (i.e., uncorrelated errors) is often assumed for simplicity even when observation errors are suspected to be correlated. While accounting for observation‐error correlations should improve the quality of the solution, it also affects the convergence rate of the minimization algorithms used to iterate to the solution. If the minimization process is stopped before reaching full convergence, which is usually the case in operational applications, the solution may be degraded even if the observation‐error correlations are correctly accounted for. In this article, we explore the influence of the observation‐error correlation matrix () on the convergence rate of a preconditioned conjugate gradient (PCG) algorithm applied to a one‐dimensional variational data assimilation (1D‐Var) problem. We design the idealized 1D‐Var system to include two key features used in more complex systems: we use the background error covariance matrix () as a preconditioner (B‐PCG); and we use a diffusion operator to model spatial correlations in and . Analytical and numerical results with the 1D‐Var system show a strong sensitivity of the convergence rate of B‐PCG to the parameters of the diffusion‐based correlation models. Depending on the parameter choices, correlated observation errors can either speed up or slow down the convergence. In practice, a compromise may be required in the parameter specifications of and between staying close to the best available estimates on the one hand and ensuring an adequate convergence rate of the minimization algorithm on the other.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An important class of nonlinear weighted least‐squares problems arises from the assimilation of observations in atmospheric and ocean models. In variational data assimilation, inverse error covariance matrices define the weighting matrices of the least‐squares problem. For observation errors, a diagonal matrix (i.e., uncorrelated errors) is often assumed for simplicity even when observation errors are suspected to be correlated. While accounting for observation‐error correlations should improve the quality of the solution, it also affects the convergence rate of the minimization algorithms used to iterate to the solution. If the minimization process is stopped before reaching full convergence, which is usually the case in operational applications, the solution may be degraded even if the observation‐error correlations are correctly accounted for. In this article, we explore the influence of the observation‐error correlation matrix () on the convergence rate of a preconditioned conjugate gradient (PCG) algorithm applied to a one‐dimensional variational data assimilation (1D‐Var) problem. We design the idealized 1D‐Var system to include two key features used in more complex systems: we use the background error covariance matrix () as a preconditioner (B‐PCG); and we use a diffusion operator to model spatial correlations in and . Analytical and numerical results with the 1D‐Var system show a strong sensitivity of the convergence rate of B‐PCG to the parameters of the diffusion‐based correlation models. Depending on the parameter choices, correlated observation errors can either speed up or slow down the convergence. In practice, a compromise may be required in the parameter specifications of and between staying close to the best available estimates on the one hand and ensuring an adequate convergence rate of the minimization algorithm on the other.
相关观测误差对变分同化问题条件的影响
一类重要的非线性加权最小二乘问题产生于大气和海洋模式观测的同化。在变分数据同化中,误差逆协方差矩阵定义了最小二乘问题的权重矩阵。对于观测误差,通常假设一个对角矩阵(即,不相关的误差),即使观测误差被怀疑是相关的。虽然考虑观测误差相关性可以提高解的质量,但它也会影响用于迭代解的最小化算法的收敛速度。如果最小化过程在达到完全收敛之前停止,这通常是在操作应用中出现的情况,即使正确地解释了观测误差相关性,解决方案也可能会降级。在本文中,我们探讨了观测误差相关矩阵()对用于一维变分数据同化(1D - Var)问题的预条件共轭梯度(PCG)算法收敛速度的影响。我们设计了理想的1D - Var系统,以包括在更复杂的系统中使用的两个关键特征:我们使用背景误差协方差矩阵()作为前置条件(B - PCG);我们使用扩散算子来模拟和中的空间相关性。1D - Var系统的分析和数值结果表明,B - PCG的收敛速率对基于扩散的相关模型的参数具有很强的敏感性。根据参数的选择,相关的观测误差可以加快或减慢收敛速度。在实践中,可能需要在参数规范和一方面保持接近最佳可用估计和另一方面确保最小化算法的适当收敛率之间做出妥协。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信