ℓ1-contractive maps on noncommutative Lp-spaces

IF 0.7 4区 数学 Q2 MATHEMATICS
C. Merdy, S. Zadeh
{"title":"ℓ1-contractive maps on noncommutative Lp-spaces","authors":"C. Merdy, S. Zadeh","doi":"10.7900/jot.2019oct09.2257","DOIUrl":null,"url":null,"abstract":"Let T:Lp(M)→Lp(N) be a bounded operator between two noncommutative Lp-spaces, 1⩽p<∞. We say that T is ℓ1-bounded (respectively ℓ1-contractive) if T⊗Iℓ1 extends to a bounded (respectively contractive) map from Lp(M;ℓ1) into Lp(N;ℓ1). We show that Yeadon's factorization theorem for Lp-isometries, 1⩽p≠2<∞, applies to an isometry T:L2(M)→L2(N) if and only if T is ℓ1-contractive. We also show that a contractive operator T:Lp(M)→Lp(N) is automatically ℓ1-contractive if it satisfies one of the following two conditions: either T is 2-positive; or T is separating, that is, for any disjoint a,b∈Lp(M) (i.e.\\ a∗b=ab∗=0), the images T(a),T(b) are disjoint as well.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019oct09.2257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Let T:Lp(M)→Lp(N) be a bounded operator between two noncommutative Lp-spaces, 1⩽p<∞. We say that T is ℓ1-bounded (respectively ℓ1-contractive) if T⊗Iℓ1 extends to a bounded (respectively contractive) map from Lp(M;ℓ1) into Lp(N;ℓ1). We show that Yeadon's factorization theorem for Lp-isometries, 1⩽p≠2<∞, applies to an isometry T:L2(M)→L2(N) if and only if T is ℓ1-contractive. We also show that a contractive operator T:Lp(M)→Lp(N) is automatically ℓ1-contractive if it satisfies one of the following two conditions: either T is 2-positive; or T is separating, that is, for any disjoint a,b∈Lp(M) (i.e.\ a∗b=ab∗=0), the images T(a),T(b) are disjoint as well.
非交换lp空间上的1-压缩映射
设T:Lp(M)→Lp(N)是两个非交换Lp空间之间的有界算子,1⩽p<∞。我们说T是ℓ1磅(分别ℓ1-收缩)如果T⊗Iℓ1从Lp(M;ℓ1) 转换为Lp(N;ℓ1) 。我们证明了Lp等距的Yeadon因子分解定理,1⩽p≠2<∞,适用于等距T:L2(M)→L2(N)当且仅当T是ℓ1-收缩性。我们还证明了一个压缩算子T:Lp(M)→Lp(N)自动ℓ1-收缩的,如果它满足以下两个条件之一:T是2-正的;或者T是分离的,也就是说,对于任何不相交的a,b∈Lp(M)(即\a*b=ab*=0),图像T(a),T(b)也是不相交的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信