Generating reading comprehension items using automated processes

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Jinnie Shin, Mark J. Gierl
{"title":"Generating reading comprehension items using automated processes","authors":"Jinnie Shin, Mark J. Gierl","doi":"10.1080/15305058.2022.2070755","DOIUrl":null,"url":null,"abstract":"Abstract Over the last five years, tremendous strides have been made in advancing the AIG methodology required to produce items in diverse content areas. However, the one content area where enormous problems remain unsolved is language arts, generally, and reading comprehension, more specifically. While reading comprehension test items can be created using many different item formats, fill-in-the-blank remains one of the most common when the goal is to measure inferential knowledge. Currently, the item development process used to create fill-in-the-blank reading comprehension items is time-consuming and expensive. Hence, the purpose of the study is to introduce a new systematic method for generating fill-in-the-blank reading comprehension items using an item modeling approach. We describe the use of different unsupervised learning methods that can be paired with natural language processing techniques to identify the salient item models within existing texts. To demonstrate the capacity of our method, 1,013 test items were generated from 100 input texts taken from fill-in-the-blank reading comprehension items used on a high-stakes college entrance exam in South Korea. Our validation results indicated that the generated items produced higher semantic similarities between the item options while depicting little to no syntactic differences with the traditionally written test items.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"22 1","pages":"289 - 311"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2022.2070755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Over the last five years, tremendous strides have been made in advancing the AIG methodology required to produce items in diverse content areas. However, the one content area where enormous problems remain unsolved is language arts, generally, and reading comprehension, more specifically. While reading comprehension test items can be created using many different item formats, fill-in-the-blank remains one of the most common when the goal is to measure inferential knowledge. Currently, the item development process used to create fill-in-the-blank reading comprehension items is time-consuming and expensive. Hence, the purpose of the study is to introduce a new systematic method for generating fill-in-the-blank reading comprehension items using an item modeling approach. We describe the use of different unsupervised learning methods that can be paired with natural language processing techniques to identify the salient item models within existing texts. To demonstrate the capacity of our method, 1,013 test items were generated from 100 input texts taken from fill-in-the-blank reading comprehension items used on a high-stakes college entrance exam in South Korea. Our validation results indicated that the generated items produced higher semantic similarities between the item options while depicting little to no syntactic differences with the traditionally written test items.
使用自动化过程生成阅读理解项目
摘要在过去的五年里,在推进制作不同内容领域项目所需的AIG方法方面取得了巨大进展。然而,一个巨大问题仍未解决的内容领域是语言艺术,更具体地说是阅读理解。虽然阅读理解测试项目可以使用许多不同的项目格式创建,但当目标是测量推理知识时,填空仍然是最常见的项目之一。目前,用于创建填空阅读理解项目的项目开发过程既耗时又昂贵。因此,本研究的目的是介绍一种利用项目建模方法生成填空阅读理解项目的新的系统方法。我们描述了使用不同的无监督学习方法,这些方法可以与自然语言处理技术相结合,以识别现有文本中的显著项目模型。为了证明我们的方法的能力,从韩国一次高风险大学入学考试中使用的填空阅读理解项目中提取的100个输入文本中生成了1013个测试项目。我们的验证结果表明,生成的项目在项目选项之间产生了更高的语义相似性,同时与传统的书面测试项目几乎没有语法差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信