Min Zhang, Baiqing Tang, Xin Li, Peng Jiang, Wei Hu, Wen Jiang, Steven Gao
{"title":"A high-gain dual-beam folded transmit-reflect-array antenna based on phase-shifting surface","authors":"Min Zhang, Baiqing Tang, Xin Li, Peng Jiang, Wei Hu, Wen Jiang, Steven Gao","doi":"10.1515/freq-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a high-gain dual-beam folded transmit-reflect-array antenna is designed based on the shared aperture method. It consists of the top transmit-reflect-array, the bottom transmitarray, and the feed horn located at the center of the bottom transmitarray. A phase-shifting surface is proposed as the transmission unit cell capable of transmitting incident waves while providing adequate transmission phase shift. The designed transmission unit cell is improved into the transmit-reflect unit cell by adding polarization grids to realize the reflection function. The bottom transmitarray is constructed by transmission unit cells. The top transmit-reflect-array is composed of transmit-reflect unit cells and polarization grids vertical to the unit cell. The x-polarized wave transmits through the top transmit-reflect-array and forms a pencil beam in the forward direction. In addition, the y-polarized wave is reflected by the top transmit-reflect-array and transmits through the bottom transmitarray to form a pencil beam in the backward direction. The tested realized gains of the transmitted beam and reflected beam at 10 GHz are 19.87 dBi with an aperture efficiency of 48.27 % and 23.95 dBi with an aperture efficiency of 30.88 %, respectively. With its low profile and ease of manufacture, it has great prospects for navigation and radar communication.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, a high-gain dual-beam folded transmit-reflect-array antenna is designed based on the shared aperture method. It consists of the top transmit-reflect-array, the bottom transmitarray, and the feed horn located at the center of the bottom transmitarray. A phase-shifting surface is proposed as the transmission unit cell capable of transmitting incident waves while providing adequate transmission phase shift. The designed transmission unit cell is improved into the transmit-reflect unit cell by adding polarization grids to realize the reflection function. The bottom transmitarray is constructed by transmission unit cells. The top transmit-reflect-array is composed of transmit-reflect unit cells and polarization grids vertical to the unit cell. The x-polarized wave transmits through the top transmit-reflect-array and forms a pencil beam in the forward direction. In addition, the y-polarized wave is reflected by the top transmit-reflect-array and transmits through the bottom transmitarray to form a pencil beam in the backward direction. The tested realized gains of the transmitted beam and reflected beam at 10 GHz are 19.87 dBi with an aperture efficiency of 48.27 % and 23.95 dBi with an aperture efficiency of 30.88 %, respectively. With its low profile and ease of manufacture, it has great prospects for navigation and radar communication.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.