{"title":"Recombinant Expression and Characterization of Endoglucanase Isolated from Iranian Bacillus Subtilis","authors":"H. Barzegar, M. Nassiri, K. Nasiri, S. Mousavi","doi":"10.30491/JABR.2020.228609.1215","DOIUrl":null,"url":null,"abstract":"Introduction: Endo-β-1,4-glucanase is the first enzyme in the conversion of cellulose to fermentable sugars. The objectives of this study were to clone and characterize a thermostable Endo-β-1,4-glucanase enzyme of Bacillus subtilis DR-8806 obtained from water samples from Dig Rostam, a hot mineral spring in Kerman, Iran. Materials and Methods: Endo-β-1,4-glucanase gene from a thermostable Bacillus subtilis bacterium was cloned and expressed in Escherichia coli. The recombinant proteins of the expression cell were tested by western blotting analysis. The enzymatic activity of the recombinant endoglucanase was measured using dinitrosalicylic acid method and carboxymethyl cellulose as substrate. Bioinformatics analysis was done to characterize domain organization and protein family through Pfam search server and PROSITE. Results: Based on 16S ribosomal RNA sequence analysis, Bacillus is characterized and named as Bacillus subtilis DR-8806. Western blot analysis verified the recombinant endoglucanase by detecting a specific band of ~55kDa. Amino acid homology analysis of the protein showed 99% homology with that of endoglucanase from Bacillus subtilis. The optimum temperature for enzyme reaction was attained at a temperature of 55°C. The cellulolytic activity of Endo-β-1,4-glucanase protein determined 8.5 IU ml-1. It showed that endoglucanase amino acid sequence contains a glycosyl hydrolase family 5, linker domain, and a cellulose-binding type 3 domain. The GH5 domain also contained a glycosyl hydrolase catalytic core. Conclusions: It is possible to consider the purified Endo-β-1,4-glucanase of B. Subtilis DR-8806 as an efficient cellulose producer. Further research is required to examine the industrial applications of this study.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":"8 1","pages":"133-140"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.228609.1215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Endo-β-1,4-glucanase is the first enzyme in the conversion of cellulose to fermentable sugars. The objectives of this study were to clone and characterize a thermostable Endo-β-1,4-glucanase enzyme of Bacillus subtilis DR-8806 obtained from water samples from Dig Rostam, a hot mineral spring in Kerman, Iran. Materials and Methods: Endo-β-1,4-glucanase gene from a thermostable Bacillus subtilis bacterium was cloned and expressed in Escherichia coli. The recombinant proteins of the expression cell were tested by western blotting analysis. The enzymatic activity of the recombinant endoglucanase was measured using dinitrosalicylic acid method and carboxymethyl cellulose as substrate. Bioinformatics analysis was done to characterize domain organization and protein family through Pfam search server and PROSITE. Results: Based on 16S ribosomal RNA sequence analysis, Bacillus is characterized and named as Bacillus subtilis DR-8806. Western blot analysis verified the recombinant endoglucanase by detecting a specific band of ~55kDa. Amino acid homology analysis of the protein showed 99% homology with that of endoglucanase from Bacillus subtilis. The optimum temperature for enzyme reaction was attained at a temperature of 55°C. The cellulolytic activity of Endo-β-1,4-glucanase protein determined 8.5 IU ml-1. It showed that endoglucanase amino acid sequence contains a glycosyl hydrolase family 5, linker domain, and a cellulose-binding type 3 domain. The GH5 domain also contained a glycosyl hydrolase catalytic core. Conclusions: It is possible to consider the purified Endo-β-1,4-glucanase of B. Subtilis DR-8806 as an efficient cellulose producer. Further research is required to examine the industrial applications of this study.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis