Análisis de la fertilidad por medio de técnicas de minería datos

Q2 Multidisciplinary
O. Castrillón, J. A. Arango, Luis Fernando Castillo
{"title":"Análisis de la fertilidad por medio de técnicas de minería datos","authors":"O. Castrillón, J. A. Arango, Luis Fernando Castillo","doi":"10.4067/s0718-07642022000300203","DOIUrl":null,"url":null,"abstract":"20%. Abstract The primary objective of this research study is to predict the most important variables that affect fertility in a person. The study is conducted by using the automatic learning and data mining platform Weka, the expectation maximization (EM) clustering algorithm, SimpleKMeans, and the classification algorithm J48, which behaves similarly to a Bayesian algorithm. Initially, an existing database is modeled until 105 records and nine variables are reached, eight independent variables (age, illnesses, accidents, surgeries, fever, alcohol, smoker, and sedentary lifestyle) and one dependent variable (fertility). The results revealed the five most influential variables: 1) age, 2) accidents, 3) fever, 4) surgery, and 5) alcohol. The success rate is over 90% when a cross-validation 80% - 20% is applied. It is concluded that the random forest and clustering algorithms employed here allow to clearly determine the most important variables that affect fertility in a person.","PeriodicalId":35948,"journal":{"name":"Informacion Tecnologica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacion Tecnologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0718-07642022000300203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

Abstract

20%. Abstract The primary objective of this research study is to predict the most important variables that affect fertility in a person. The study is conducted by using the automatic learning and data mining platform Weka, the expectation maximization (EM) clustering algorithm, SimpleKMeans, and the classification algorithm J48, which behaves similarly to a Bayesian algorithm. Initially, an existing database is modeled until 105 records and nine variables are reached, eight independent variables (age, illnesses, accidents, surgeries, fever, alcohol, smoker, and sedentary lifestyle) and one dependent variable (fertility). The results revealed the five most influential variables: 1) age, 2) accidents, 3) fever, 4) surgery, and 5) alcohol. The success rate is over 90% when a cross-validation 80% - 20% is applied. It is concluded that the random forest and clustering algorithms employed here allow to clearly determine the most important variables that affect fertility in a person.
通过数据挖掘技术进行生育分析
20%。本研究的主要目的是预测影响一个人生育能力的最重要变量。本研究采用自动学习和数据挖掘平台Weka、期望最大化(EM)聚类算法、SimpleKMeans和行为类似贝叶斯算法的分类算法J48进行。最初,对现有数据库进行建模,直到得到105条记录和9个变量,8个自变量(年龄、疾病、事故、手术、发烧、酒精、吸烟和久坐的生活方式)和1个因变量(生育能力)。结果揭示了五个最重要的变量:1)年龄,2)事故,3)发烧,4)手术,5)酒精。当交叉验证80% - 20%时,成功率超过90%。结论是,这里使用的随机森林和聚类算法可以清楚地确定影响一个人生育能力的最重要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informacion Tecnologica
Informacion Tecnologica Multidisciplinary-Multidisciplinary
自引率
0.00%
发文量
119
期刊介绍: The Información tecnológica magazine is a service of the Center for Information Technology (CIT), this service is restricted and prohibited their sale to third parties as well as the total or partial reproduction for commercial purposes. The articles presented in this magazine are for original papers sent by the authors and have been accepted for publication by a committee, and an Editorial Committee of Referees. The Center for Information Technology is not responsible for the opinions contained in the articles, that responsibility rests with the perpetrators of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信