Spectrum and Analytic Functional Calculus for Clifford Operators via Stem Functions

IF 0.3 Q4 MATHEMATICS
F. Vasilescu
{"title":"Spectrum and Analytic Functional Calculus for Clifford Operators via Stem Functions","authors":"F. Vasilescu","doi":"10.1515/conop-2020-0115","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this work is the construction of an analytic functional calculus for Clifford operators, which are operators acting on certain modules over Clifford algebras. Unlike in some preceding works by other authors, we use a spectrum defined in the complex plane, and also certain stem functions, analytic in neighborhoods of such a spectrum. The replacement of the slice regular functions, having values in a Clifford algebra, by analytic stem functions becomes possible because of an isomorphism induced by a Cauchy type transform, whose existence is proved in the first part of this work.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"8 1","pages":"90 - 113"},"PeriodicalIF":0.3000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0115","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The main purpose of this work is the construction of an analytic functional calculus for Clifford operators, which are operators acting on certain modules over Clifford algebras. Unlike in some preceding works by other authors, we use a spectrum defined in the complex plane, and also certain stem functions, analytic in neighborhoods of such a spectrum. The replacement of the slice regular functions, having values in a Clifford algebra, by analytic stem functions becomes possible because of an isomorphism induced by a Cauchy type transform, whose existence is proved in the first part of this work.
基于干函数的Clifford算子的谱与解析泛函演算
摘要本文的主要目的是构造Clifford算子的解析泛函演算,Clifford算子是作用于Clifford代数上的某些模上的算子。与其他作者之前的一些工作不同,我们使用复平面上定义的谱,以及在该谱的邻域上解析的某些干函数。由于柯西变换的同构性,使得在Clifford代数中有值的切片正则函数用解析干函数代替成为可能。本文第一部分证明了柯西变换的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信