L. van Haasterecht, C. Dsouza, Y. Ma, H. I. Korkmaz, Y. de Jong, J. Ket, P. V. van Zuijlen, M. Groot, S. Komarova
{"title":"In vitro responses of human dermal fibroblasts to mechanical strain: A systematic review and meta-analysis","authors":"L. van Haasterecht, C. Dsouza, Y. Ma, H. I. Korkmaz, Y. de Jong, J. Ket, P. V. van Zuijlen, M. Groot, S. Komarova","doi":"10.3389/fmech.2023.1049659","DOIUrl":null,"url":null,"abstract":"In vitro research in the field of mechanotransducive regulation of dermal fibroblasts is characterized by highly variable methodology and contradictory results. The primary objective of this systematic review was to establish how in vitro mechanical stretch affects human dermal fibroblast function, by means of a quantitative synthesis of all available evidence. The secondary objectives were to examine the effects of covariates related to donor age, fibroblast origin, experimental treatments, and mechanical stimulation parameters on dermal fibroblast responsiveness to mechanical strain. Summary outcomes for fibroblast proliferation and collagen production were combined using a fixed-effects meta-analytical model. Subgroup analysis and meta-regression were used to investigate the effects of different conditions on the summary outcomes. Mechanical strain was found to not affect fibroblast proliferation in neonatal fibroblasts, while adult fibroblasts proliferation was significantly increased. Collagen production was significantly increased in response to mechanical stimulation, with Vitamin C stimulation as the most important covariate. Stretching frequency emerged as positively associated with fibroblast proliferation and negatively associated with collagen production. We conclude from this study that distinct differences exist in the effects of mechanical stretching between dermal fibroblasts from neonatal and adult donors, which will help to further elucidate the pathophysiological mechanism behind tension-induced scarring.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fmech.2023.1049659","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro research in the field of mechanotransducive regulation of dermal fibroblasts is characterized by highly variable methodology and contradictory results. The primary objective of this systematic review was to establish how in vitro mechanical stretch affects human dermal fibroblast function, by means of a quantitative synthesis of all available evidence. The secondary objectives were to examine the effects of covariates related to donor age, fibroblast origin, experimental treatments, and mechanical stimulation parameters on dermal fibroblast responsiveness to mechanical strain. Summary outcomes for fibroblast proliferation and collagen production were combined using a fixed-effects meta-analytical model. Subgroup analysis and meta-regression were used to investigate the effects of different conditions on the summary outcomes. Mechanical strain was found to not affect fibroblast proliferation in neonatal fibroblasts, while adult fibroblasts proliferation was significantly increased. Collagen production was significantly increased in response to mechanical stimulation, with Vitamin C stimulation as the most important covariate. Stretching frequency emerged as positively associated with fibroblast proliferation and negatively associated with collagen production. We conclude from this study that distinct differences exist in the effects of mechanical stretching between dermal fibroblasts from neonatal and adult donors, which will help to further elucidate the pathophysiological mechanism behind tension-induced scarring.
期刊介绍:
Frontiers of Mechanical Engineering is an international peer-reviewed academic journal sponsored by the Ministry of Education of China. The journal seeks to provide a forum for a broad blend of high-quality academic papers in order to promote rapid communication and exchange between researchers, scientists, and engineers in the field of mechanical engineering. The journal publishes original research articles, review articles and feature articles.