{"title":"Higher integrability for anisotropic parabolic systems of p-Laplace type","authors":"Leon Mons","doi":"10.1515/anona-2022-0308","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider anisotropic parabolic systems of p p -Laplace type. The model case is the parabolic p i {p}_{i} -Laplace system u t − ∑ i = 1 n ∂ ∂ x i ( ∣ D i u ∣ p i − 2 D i u ) = 0 {u}_{t}-\\mathop{\\sum }\\limits_{i=1}^{n}\\frac{\\partial }{\\partial {x}_{i}}({| {D}_{i}u| }^{{p}_{i}-2}{D}_{i}u)=0 with exponents p i ≥ 2 {p}_{i}\\ge 2 . Under the assumption that the exponents are not too far apart, i.e., the difference p max − p min {p}_{\\max }-{p}_{\\min } is sufficiently small, we establish a higher integrability result for weak solutions. This extends a result, which was only known for the elliptic setting, to the parabolic setting.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0308","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this article, we consider anisotropic parabolic systems of p p -Laplace type. The model case is the parabolic p i {p}_{i} -Laplace system u t − ∑ i = 1 n ∂ ∂ x i ( ∣ D i u ∣ p i − 2 D i u ) = 0 {u}_{t}-\mathop{\sum }\limits_{i=1}^{n}\frac{\partial }{\partial {x}_{i}}({| {D}_{i}u| }^{{p}_{i}-2}{D}_{i}u)=0 with exponents p i ≥ 2 {p}_{i}\ge 2 . Under the assumption that the exponents are not too far apart, i.e., the difference p max − p min {p}_{\max }-{p}_{\min } is sufficiently small, we establish a higher integrability result for weak solutions. This extends a result, which was only known for the elliptic setting, to the parabolic setting.