Domination and Eternal Domination of Jahangir Graph

Ramy S. Shaheen, Mohammad Assaad, Ali Kassem
{"title":"Domination and Eternal Domination of Jahangir Graph","authors":"Ramy S. Shaheen, Mohammad Assaad, Ali Kassem","doi":"10.4236/OJDM.2019.93008","DOIUrl":null,"url":null,"abstract":"In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. We consider the “all guards move” of the eternal dominating set problem. In which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current position after each attack. If the new formed set of guards is still a dominating set of the graph then we successfully defended the attack. Our goal is to find the minimum number of guards required to eternally protect the graph. We call this number the m-eternal domination number and we denote it by . In this paper we find the eternal domination number of Jahangir graph Js,m for s=2,3 and arbitrary m. We also find the domination number for J3,m .","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2019.93008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. We consider the “all guards move” of the eternal dominating set problem. In which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current position after each attack. If the new formed set of guards is still a dominating set of the graph then we successfully defended the attack. Our goal is to find the minimum number of guards required to eternally protect the graph. We call this number the m-eternal domination number and we denote it by . In this paper we find the eternal domination number of Jahangir graph Js,m for s=2,3 and arbitrary m. We also find the domination number for J3,m .
Jahangir图的支配与永恒支配
在永恒支配集问题中,后卫在图上形成一个支配集,每一步都攻击一个顶点。我们考虑了永恒支配集问题的“全体后卫移动”。其中一名警卫必须移动到被攻击的顶点,而所有剩余的警卫在每次攻击后都可以移动到相邻的顶点或停留在当前位置。如果新组建的一组后卫仍然是图中的一组统治者,那么我们成功地防守了进攻。我们的目标是找到永久保护图形所需的最小保护数量。我们称这个数为m永恒支配数,用表示。本文给出了当s=2,3和任意m时,Jahangir图Js,m的永恒控制数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信