New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process

IF 0.3 Q4 MATHEMATICS
D. Ramesh Kumar, M. Pitchaimani
{"title":"New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process","authors":"D. Ramesh Kumar,&nbsp;M. Pitchaimani","doi":"10.1016/j.trmi.2018.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define a generalized <span><math><mi>T</mi></math></span>-contraction and derive some new coupled fixed point theorems in cone metric spaces with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov process.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 409-419"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.006","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we define a generalized T-contraction and derive some new coupled fixed point theorems in cone metric spaces with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov process.

锥度量空间中新的耦合不动点定理及其在积分方程和Markov过程中的应用
在具有全序条件的圆锥度量空间中,我们定义了广义t收缩,并导出了一些新的耦合不动点定理。给出了一个说明性示例来支持我们的结果。作为应用,我们利用所得结果研究了一类积分方程组公解的存在性。我们也给出了一个在马尔可夫过程中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信