Crossing the Transcendental Divide: From Translation Surfaces to Algebraic Curves

Pub Date : 2022-11-01 DOI:10.1080/10586458.2023.2203413
Turku Ozlum cCelik, S. Fairchild, Yelena Mandelshtam
{"title":"Crossing the Transcendental Divide: From Translation Surfaces to Algebraic Curves","authors":"Turku Ozlum cCelik, S. Fairchild, Yelena Mandelshtam","doi":"10.1080/10586458.2023.2203413","DOIUrl":null,"url":null,"abstract":"We study constructing an algebraic curve from a Riemann surface given via a translation surface, which is a collection of finitely many polygons in the plane with sides identified by translation. We use the theory of discrete Riemann surfaces to give an algorithm for approximating the Jacobian variety of a translation surface whose polygon can be decomposed into squares. We first implement the algorithm in the case of $L$ shaped polygons where the algebraic curve is already known. The algorithm is also implemented in any genus for specific examples of Jenkins-Strebel representatives, a dense family of translation surfaces that, until now, lived squarely on the analytic side of the transcendental divide between Riemann surfaces and algebraic curves. Using Riemann theta functions, we give numerical experiments and resulting conjectures up to genus 5.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2203413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study constructing an algebraic curve from a Riemann surface given via a translation surface, which is a collection of finitely many polygons in the plane with sides identified by translation. We use the theory of discrete Riemann surfaces to give an algorithm for approximating the Jacobian variety of a translation surface whose polygon can be decomposed into squares. We first implement the algorithm in the case of $L$ shaped polygons where the algebraic curve is already known. The algorithm is also implemented in any genus for specific examples of Jenkins-Strebel representatives, a dense family of translation surfaces that, until now, lived squarely on the analytic side of the transcendental divide between Riemann surfaces and algebraic curves. Using Riemann theta functions, we give numerical experiments and resulting conjectures up to genus 5.
分享
查看原文
跨越超越鸿沟:从平移曲面到代数曲线
我们研究从通过平移曲面给出的黎曼曲面构造代数曲线,平移曲面是平面中有限多个多边形的集合,边通过平移确定。我们利用离散黎曼曲面理论,给出了一种近似平移曲面的雅可比变换的算法,该平移曲面的多边形可以分解为正方形。我们首先在代数曲线已知的$L$形多边形的情况下实现该算法。对于Jenkins-Strebel代表的具体例子,该算法也可以在任何亏格中实现,这是一个密集的平移曲面族,直到现在,它一直生活在黎曼曲面和代数曲线之间超越划分的分析侧。利用Riemann-theta函数,我们给出了数值实验和由此产生的亏格为5的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信