Frequentist model averaging for envelope models

Pub Date : 2023-01-27 DOI:10.1111/sjos.12634
Ziwen Gao, Jiahui Zou, Xinyu Zhang, Yanyuan Ma
{"title":"Frequentist model averaging for envelope models","authors":"Ziwen Gao, Jiahui Zou, Xinyu Zhang, Yanyuan Ma","doi":"10.1111/sjos.12634","DOIUrl":null,"url":null,"abstract":"The envelope method produces efficient estimation in multivariate linear regression, and is widely applied in biology, psychology, and economics. This paper estimates parameters through a model averaging methodology and promotes the predicting abilities of the envelope models. We propose a frequentist model averaging method by minimizing a cross‐validation criterion. When all the candidate models are misspecified, the proposed model averaging estimator is proved to be asymptotically optimal. When correct candidate models exist, the coefficient estimator is proved to be consistent, and the sum of the weights assigned to the correct models, in probability, converges to one. Simulations and an empirical application demonstrate the effectiveness of the proposed method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The envelope method produces efficient estimation in multivariate linear regression, and is widely applied in biology, psychology, and economics. This paper estimates parameters through a model averaging methodology and promotes the predicting abilities of the envelope models. We propose a frequentist model averaging method by minimizing a cross‐validation criterion. When all the candidate models are misspecified, the proposed model averaging estimator is proved to be asymptotically optimal. When correct candidate models exist, the coefficient estimator is proved to be consistent, and the sum of the weights assigned to the correct models, in probability, converges to one. Simulations and an empirical application demonstrate the effectiveness of the proposed method.
分享
查看原文
包络模型的频域模型平均
包络法在多元线性回归中产生了有效的估计,在生物学、心理学和经济学中得到了广泛的应用。本文通过模型平均法估计参数,提高了包络模型的预测能力。我们提出了一种通过最小化交叉验证标准的频率表模型平均方法。当所有候选模型都被错误指定时,所提出的模型平均估计器被证明是渐近最优的。当存在正确的候选模型时,证明系数估计器是一致的,并且分配给正确模型的权重之和在概率上收敛为1。仿真和实证应用证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信