The Size of a Photon

Richard A. Hutchin
{"title":"The Size of a Photon","authors":"Richard A. Hutchin","doi":"10.4236/OPJ.2021.115010","DOIUrl":null,"url":null,"abstract":"This paper begins by exploring a useful and neglected detail of a photon—its physical size perpendicular to the direction of propagation in the same way as an atom or neutron has a physical size. Such a photon size would be quite separate from the cross-section of a photonic interaction, which depends on the material interacting. Such a perpendicular dimension of a photon will be invariant under Lorentz transform parallel to the light propagation direction and will thus be the same for all frequencies of light. This study also leads to new details about how a photon interacts, offering an explanation for the familiar physics where light slightly above and below the mean frequency of an excited state can still excite the same state without violation of conservation of energy—a mystery explored thoroughly in a previous paper without finding the solution offered here. As usual, a better elucidation of the details of light interaction also leads to new insights—especially about the vacuum field. The Appendix summarizes some previous research relevant to this discussion","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"11 1","pages":"121-131"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OPJ.2021.115010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper begins by exploring a useful and neglected detail of a photon—its physical size perpendicular to the direction of propagation in the same way as an atom or neutron has a physical size. Such a photon size would be quite separate from the cross-section of a photonic interaction, which depends on the material interacting. Such a perpendicular dimension of a photon will be invariant under Lorentz transform parallel to the light propagation direction and will thus be the same for all frequencies of light. This study also leads to new details about how a photon interacts, offering an explanation for the familiar physics where light slightly above and below the mean frequency of an excited state can still excite the same state without violation of conservation of energy—a mystery explored thoroughly in a previous paper without finding the solution offered here. As usual, a better elucidation of the details of light interaction also leads to new insights—especially about the vacuum field. The Appendix summarizes some previous research relevant to this discussion
光子的大小
本文首先探讨了光子的一个有用但被忽视的细节——它的物理尺寸垂直于传播方向,就像原子或中子的物理尺寸一样。这样的光子大小将与光子相互作用的横截面完全不同,而光子相互作用取决于相互作用的材料。光子的这种垂直维度在平行于光传播方向的洛伦兹变换下是不变的,因此对于光的所有频率都是相同的。这项研究还揭示了光子如何相互作用的新细节,为人们熟悉的物理现象提供了解释,在这种物理现象中,略高于和低于激发态平均频率的光仍然可以在不违反能量守恒的情况下激发同一状态——这是一个谜,在之前的一篇论文中进行了彻底的探索,但没有找到这里提供的解决方案。和往常一样,更好地阐明光相互作用的细节也会带来新的见解,尤其是关于真空场的见解。附录总结了与本次讨论相关的一些先前研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
431
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信