Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments

IF 0.7 4区 数学 Q2 MATHEMATICS
Pavle V. M. Blagojevi'c, Jaime Calles Loperena, M. Crabb, Aleksandra S. Dimitrijevi'c Blagojevi'c
{"title":"Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments","authors":"Pavle V. M. Blagojevi'c, Jaime Calles Loperena, M. Crabb, Aleksandra S. Dimitrijevi'c Blagojevi'c","doi":"10.12775/tmna.2022.041","DOIUrl":null,"url":null,"abstract":"In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the \nclassical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments.\nUsing the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments\n$\\mu_1,\\dots,\\mu_j$ on the Grassmann manifold $G_{\\ell}\\big(\\mathbb{R}^d\\big)$\n and a given\ninteger $k\\geq 1$ there exist a linear subspace $L\\in G_{\\ell}\\big(\\mathbb{R}^d\\big)$ and\n$k$\naffine hyperplanes in $L$ that equipart the masses $\\mu_1^L,\\dots,\\mu_j^L$\nassigned to the subspace $L$, provided that $d\\geq j + (2^{k-1}-1)2^{\\lfloor\\log_2j\\rfloor}$.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments. Using the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments $\mu_1,\dots,\mu_j$ on the Grassmann manifold $G_{\ell}\big(\mathbb{R}^d\big)$ and a given integer $k\geq 1$ there exist a linear subspace $L\in G_{\ell}\big(\mathbb{R}^d\big)$ and $k$ affine hyperplanes in $L$ that equipart the masses $\mu_1^L,\dots,\mu_j^L$ assigned to the subspace $L$, provided that $d\geq j + (2^{k-1}-1)2^{\lfloor\log_2j\rfloor}$.
质量分配的gr nbaum- hadwiger - ramos问题的拓扑结构
本文在Schnider、Axelrod Freed和Soberón最近工作的推动下,研究了经典Grünbaum-Hadwiger-Ramos质量分配问题到质量分配的一个推广。利用Fadell-Husseini指数理论,我们证明了对于Grassmann流形$G_,条件是$d\geq j+(2^{k-1}-1)2^{\lfloor\log_2j\lfloor}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信