Ordinal Outcome Modeling: The Application of the Adaptive Moment Estimation Optimizer to the Elastic Net Penalized Stereotype Logit

A. Williams
{"title":"Ordinal Outcome Modeling: The Application of the Adaptive Moment Estimation Optimizer to the Elastic Net Penalized Stereotype Logit","authors":"A. Williams","doi":"10.4236/jdaip.2019.71002","DOIUrl":null,"url":null,"abstract":"Penalized ordinal outcome models were developed to model high dimensional data with ordinal outcomes. One option is the penalized stereotype logit, which includes nonlinear combinations of parameter estimates. Optimization algorithms assuming linearity and function convexity were applied to fit this model. In this study the application of the adaptive moment estimation (Adam) optimizer, suited for nonlinear optimization, to the elastic net penalized stereotype logit model is proposed. The proposed model is compared to the L1 penalized ordinalgmifs stereotype model. Both methods were applied to simulated and real data, with non-Hodgkin lymphoma (NHL) cancer subtypes as the outcome, with results presented and discussed.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2019.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Penalized ordinal outcome models were developed to model high dimensional data with ordinal outcomes. One option is the penalized stereotype logit, which includes nonlinear combinations of parameter estimates. Optimization algorithms assuming linearity and function convexity were applied to fit this model. In this study the application of the adaptive moment estimation (Adam) optimizer, suited for nonlinear optimization, to the elastic net penalized stereotype logit model is proposed. The proposed model is compared to the L1 penalized ordinalgmifs stereotype model. Both methods were applied to simulated and real data, with non-Hodgkin lymphoma (NHL) cancer subtypes as the outcome, with results presented and discussed.
有序结果建模:自适应矩估计优化器在弹性网惩罚刻板印象Logit中的应用
惩罚有序结果模型被开发用于对具有有序结果的高维数据进行建模。一种选择是惩罚刻板印象logit,它包括参数估计的非线性组合。采用假设线性和函数凸性的优化算法来拟合该模型。在本研究中,提出了适用于非线性优化的自适应矩估计(Adam)优化器在弹性网络惩罚刻板印象logit模型中的应用。将所提出的模型与L1惩罚的ordinalgifs刻板印象模型进行了比较。这两种方法都应用于模拟和真实数据,以非霍奇金淋巴瘤(NHL)癌症亚型为结果,提出并讨论了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信