A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andrew Rout, Vedran Sohinger
{"title":"A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation","authors":"Andrew Rout, Vedran Sohinger","doi":"10.1080/03605302.2023.2243491","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we give a microscopic derivation of Gibbs measures for the focusing cubic nonlinear Schrödinger equation on the one-dimensional torus from many-body quantum Gibbs states. Since we are not making any positivity assumptions on the interaction, it is necessary to introduce a truncation of the mass in the classical setting and of the rescaled particle number in the quantum setting. Our methods are based on a perturbative expansion of the interaction, similarly as in [1]. Due to the presence of the truncation, the obtained series have infinite radius of convergence. We treat the case of bounded, L 1 and delta function interaction potentials, without any sign assumptions. Within this framework, we also study time-dependent correlation functions. This is the first such known result in the focusing regime.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2243491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract In this paper, we give a microscopic derivation of Gibbs measures for the focusing cubic nonlinear Schrödinger equation on the one-dimensional torus from many-body quantum Gibbs states. Since we are not making any positivity assumptions on the interaction, it is necessary to introduce a truncation of the mass in the classical setting and of the rescaled particle number in the quantum setting. Our methods are based on a perturbative expansion of the interaction, similarly as in [1]. Due to the presence of the truncation, the obtained series have infinite radius of convergence. We treat the case of bounded, L 1 and delta function interaction potentials, without any sign assumptions. Within this framework, we also study time-dependent correlation functions. This is the first such known result in the focusing regime.
一维聚焦三次非线性薛定谔方程吉布斯测度的微观推导
摘要本文从多体量子吉布斯态出发,给出了一维环面上聚焦三次非线性薛定谔方程的吉布斯测度的微观推导。由于我们没有对相互作用做出任何积极的假设,因此有必要在经典设置中引入质量截断,在量子设置中引入重新缩放的粒子数截断。我们的方法基于相互作用的微扰展开,类似于[1]中的方法。由于存在截断,得到的级数具有无穷大的收敛半径。我们在没有任何符号假设的情况下处理有界的L1和delta函数相互作用势的情况。在这个框架内,我们还研究了时间相关函数。这是聚焦机制中第一个已知的这样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信