On the eigenforms of compact stratified spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
Luobin Fang
{"title":"On the eigenforms of compact stratified spaces","authors":"Luobin Fang","doi":"10.1007/s10455-022-09883-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a compact Thom–Mather stratified pseudomanifold, and let <i>M</i> be the regular part of <i>X</i> endowed with an iterated metric. In this paper, we prove that if the curvature operator of <i>M</i> is bounded, then the <span>\\(L^2\\)</span> harmonic space of <i>M</i> is finite dimensional. Next we consider the absolute eigenvalue problems of the Hodge Laplacian of a sequence of compact domains <span>\\(\\Omega _j\\)</span> converging to <i>M</i>. We prove that when the curvature operator of <i>M</i> is bounded, the eigenvalues of <span>\\(\\Omega _j\\)</span> converge to eigenvalues of <i>M</i>, and the eigenforms of <span>\\(\\Omega _j\\)</span> converge to eigenforms of <i>M</i> in the Sobolev norm. This generalizes Chavel and Feldman’s theorem in Chavel and Feldman (J Funct Anal 30:198-222, 1978) from compact manifolds to compact pseudomanifolds and from functions to differential forms. Then, we apply our results to <span>\\(L^2\\)</span>-chomology. We will give a correspondence between boundary cohomology and <span>\\(L^2\\)</span>-cohomology.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09883-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a compact Thom–Mather stratified pseudomanifold, and let M be the regular part of X endowed with an iterated metric. In this paper, we prove that if the curvature operator of M is bounded, then the \(L^2\) harmonic space of M is finite dimensional. Next we consider the absolute eigenvalue problems of the Hodge Laplacian of a sequence of compact domains \(\Omega _j\) converging to M. We prove that when the curvature operator of M is bounded, the eigenvalues of \(\Omega _j\) converge to eigenvalues of M, and the eigenforms of \(\Omega _j\) converge to eigenforms of M in the Sobolev norm. This generalizes Chavel and Feldman’s theorem in Chavel and Feldman (J Funct Anal 30:198-222, 1978) from compact manifolds to compact pseudomanifolds and from functions to differential forms. Then, we apply our results to \(L^2\)-chomology. We will give a correspondence between boundary cohomology and \(L^2\)-cohomology.

关于紧致分层空间的本征形式
设X是紧致Thom–Mather分层伪流形,设M是X的正则部分,赋予迭代度量。本文证明了如果M的曲率算子是有界的,则M的调和空间是有限维的。接下来,我们考虑了收敛到M的紧致域序列的Hodge-Laplacean的绝对特征值问题。我们证明了当M的曲率算子有界时,在Sobolev范数中,\(\Omega_j\)的特征值收敛于M的特征值,\(\ Omega_j \)的本征型收敛于M。这将Chavel和Feldman(J Funct Anal 30:198-221978)中的Chavel和Feldman定理从紧致流形推广到紧致伪流形,从函数推广到微分形式。然后,我们将我们的结果应用于\(L^2)-同调。我们将给出边界上同调与(L^2)-上同调之间的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信