Co-design Center for Exascale Machine Learning Technologies (ExaLearn)

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Francis J. Alexander, James Ang, Jenna A. Bilbrey, J. Balewski, T. Casey, Ryan Chard, J. Choi, Sutanay Choudhury, B. Debusschere, Anthony Degennaro, Nikoli Dryden, J. Ellis, Ian T. Foster, Cristina Garcia Cardona, Sayan Ghosh, P. Harrington, Yunzhi Huang, S. Jha, Travis Johnston, Ai Kagawa, R. Kannan, Neeraj Kumar, Zhengchun Liu, N. Maruyama, S. Matsuoka, Erin McCarthy, J. Mohd-Yusof, Peter Nugent, Yosuke Oyama, T. Proffen, D. Pugmire, S. Rajamanickam, V. Ramakrishniah, M. Schram, S. Seal, G. Sivaraman, Christine M. Sweeney, Li Tan, R. Thakur, B. V. Van Essen, Logan T. Ward, P. Welch, Michael Wolf, S. Xantheas, K. Yager, Shinjae Yoo, Byung-Jun Yoon
{"title":"Co-design Center for Exascale Machine Learning Technologies (ExaLearn)","authors":"Francis J. Alexander, James Ang, Jenna A. Bilbrey, J. Balewski, T. Casey, Ryan Chard, J. Choi, Sutanay Choudhury, B. Debusschere, Anthony Degennaro, Nikoli Dryden, J. Ellis, Ian T. Foster, Cristina Garcia Cardona, Sayan Ghosh, P. Harrington, Yunzhi Huang, S. Jha, Travis Johnston, Ai Kagawa, R. Kannan, Neeraj Kumar, Zhengchun Liu, N. Maruyama, S. Matsuoka, Erin McCarthy, J. Mohd-Yusof, Peter Nugent, Yosuke Oyama, T. Proffen, D. Pugmire, S. Rajamanickam, V. Ramakrishniah, M. Schram, S. Seal, G. Sivaraman, Christine M. Sweeney, Li Tan, R. Thakur, B. V. Van Essen, Logan T. Ward, P. Welch, Michael Wolf, S. Xantheas, K. Yager, Shinjae Yoo, Byung-Jun Yoon","doi":"10.1177/10943420211029302","DOIUrl":null,"url":null,"abstract":"Rapid growth in data, computational methods, and computing power is driving a remarkable revolution in what variously is termed machine learning (ML), statistical learning, computational learning, and artificial intelligence. In addition to highly visible successes in machine-based natural language translation, playing the game Go, and self-driving cars, these new technologies also have profound implications for computational and experimental science and engineering, as well as for the exascale computing systems that the Department of Energy (DOE) is developing to support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific discovery on exascale systems, they also appear poised to have important implications for the design and use of exascale computers themselves, including high-performance computing (HPC) for ML and ML for HPC. The overarching goal of the ExaLearn co-design project is to provide exascale ML software for use by Exascale Computing Project (ECP) applications, other ECP co-design centers, and DOE experimental facilities and leadership class computing facilities.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"35 1","pages":"598 - 616"},"PeriodicalIF":2.5000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211029302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 9

Abstract

Rapid growth in data, computational methods, and computing power is driving a remarkable revolution in what variously is termed machine learning (ML), statistical learning, computational learning, and artificial intelligence. In addition to highly visible successes in machine-based natural language translation, playing the game Go, and self-driving cars, these new technologies also have profound implications for computational and experimental science and engineering, as well as for the exascale computing systems that the Department of Energy (DOE) is developing to support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific discovery on exascale systems, they also appear poised to have important implications for the design and use of exascale computers themselves, including high-performance computing (HPC) for ML and ML for HPC. The overarching goal of the ExaLearn co-design project is to provide exascale ML software for use by Exascale Computing Project (ECP) applications, other ECP co-design centers, and DOE experimental facilities and leadership class computing facilities.
Exascale机器学习技术协同设计中心(ExaLearn)
数据、计算方法和计算能力的快速增长正在推动一场引人注目的革命,这场革命被称为机器学习(ML)、统计学习、计算学习和人工智能。除了在基于机器的自然语言翻译、围棋游戏和自动驾驶汽车方面取得了引人注目的成功外,这些新技术还对计算和实验科学与工程,以及能源部(DOE)为支持这些学科而开发的EB级计算系统产生了深远的影响。这些学习技术不仅为exascale系统的科学发现开辟了令人兴奋的机会,而且似乎也将对exascale计算机本身的设计和使用产生重要影响,包括用于ML的高性能计算(HPC)和用于HPC的ML。ExaLearn联合设计项目的首要目标是提供exascale ML软件,供exascale计算项目(ECP)应用程序、其他ECP联合设计中心、DOE实验设施和领导级计算设施使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信